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Abstract 
The relativistic extension of the classic stellar structure equations is investigated. It is pointed out that the Tolman-Oppenheimer-Volkov 

(TOV) equation with the gradient equation for gravitational mass can be made complete as a closed set of differential equations by adding 

that for the Tolman temperature, and the set is proposed as the relativistic hydrostatic structure equations. The exact forms of the 

relativistic Poisson equation and the steady-state heat conduction equation in the curved spacetime are derived. The application to an ideal 

gas of particles with the conserved particle number current leads to a strong prediction that the heat capacity ratio almost becomes one in 

any Newtonian convection zone such as the solar surface. The steady-state heat conduction equation is solved exactly in the system and 

thermodynamic observables exhibit the power law behavior, which implies the possibility for the system to be a new model of stellar corona 

and a flaw in the earlier one obtained by using the non-relativistic stellar structure equations. The mixture with another ideal gas yields 

multilayer structure to a stellar model, in which classic stellar structure equations are reproduced and analytic multilayer structure of 

luminous stars is revealed in a suitable approximation.  

 Keywords: Tolman temperature; Poisson equation; Tolman-Oppenheimer-Volkov 

Introduction 
As also read from descriptions in myths and Bible, the brightness of stars has been recognized as something indispensable and reverent 

from ancient time. The Sun has given energy to living beings during the day, shining stars have attracted people like jewels in the 

night. How they maintain energy and beauty has been a mystery before physicists unveil it. To reveal the mystery, Helmholtz and 

Kelvin proposed a hypothesis that the brightness of the Sun originated in the gravitational potential energy due to the contraction of 

solar fluid [1, 2]. See ref. for related history [3]. This proposal was rejected because only the gravitational contraction cannot produce 

sufficient energy to maintain the solar visibility longer than the time-scale of terrestrial minerals. Taking into account the progress of 

nuclear physics, Eddington pointed out that what is necessary for the Sun to gain sufficient luminous energy is certain subatomic 

reaction process, whose insight was subsequently developed further by Gamov and Bethe [4-6]. For a spherically symmetric star, this 

Eddington’s insight is described by the following equation 

4 2 ,dLr r
dr

π=       (1.1) 

where Lr is the energy flowing outwards across a sphere of radius r called luminosity, ϱ the mass density, and ϵ the net energy 
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production rate per unit mass liberated from all reaction processes including subatomic ones. If such produced energy is transported 

by radiation, then the temperature gradient inside a star is induced as [7]. 

3 2

3
16 4

r

B

LdT
dr T r

κ
σ π

= −


        (1.2) 

where𝝈𝝈𝑩𝑩 = 𝝅𝝅𝟐𝟐𝒄𝒄𝒄𝒄 𝟒𝟒
𝑩𝑩

/(𝟔𝟔𝟔𝟔(𝐜𝐜ℏ)𝟑𝟑   is the Stefan-Boltzmann constant and κ is the opacity of stellar fluid per unit mass, while if energy 

is transported by convection, the temperature gradient is replaced by 

2

1(1 ) N rQG M TdT
dr r Pγ

= − −   (1.3) 

where γ is the specific heat ratio of stellar fluid, P the local pressure, GN the Newton constant, Mr defined by 

24rdM r
dr

π=     (1.4) 

On the other hand, the visibility of a luminous star is based on its stable existence, which is achieved as a result of the balance between 

the gravitational force and the internal pressure of stellar fluid. In a region where the gravitational force can be approximated by the 

Newtonian one, the hydrostatic equilibrium can be described by 

2
N rG MdP

dr r
= −                                                                                 (1.5)

The above set of differential equations is basic to investigate stellar structure and known as the stellar structure equations. Solving 

them combining equations of state for P, ϵ, κ in terms of ϱ, T with suitable boundary conditions, one can determine four macroscopic 

variables ϱ, T, Mr, Lr as functions of r. See ref.[8–13] .These differential equations also yield information on interdependent relations 

among global observables of luminous stars such as the mass-luminosity relation and the luminosity-temperature one depicted by the 

Hertzsprung-Russell diagram [5]. See ref. for their recent data [14-16]. The above traditional stellar structure equations have certainly 

played important roles to extract information on interior of luminous stars and interdependent relations of their global observables. 

However, they are apparently built on the basis of non-relativistic physics, which restricts them to be applicable only in the Newtonian 

regime such that density and pressure are sufficiently small like in the neighborhood of a stellar surface and the inside of a light star. 

See ref. [17]. Indeed, the relativistic extension of the equation for hydrostatic equilibrium (1.5) has already been investigated and 

established as the Tolman-Oppenheimer-Volkov (TOV) equation and the deviation between nonrelativistic results and relativistic 

ones increases as the mass density does [18-21]. Since there is an evolutionary process from a main sequence star to a highly dense 

one consisting of degenerate matter, it would be desirable to extend the stellar structure equations fully to their relativistic ones to be 

applicable in the non-Newtonian regime so as to be able to investigate the interior of a degenerate star and keep track of a stellar 

evolutionary process. With taking this into account, it is natural to ask how the traditional structure equations should be extended to 

the general relativistic ones, and whether any significant consequence can be drawn from this extension particularly to physics of 

luminous stars less dense than compact stars. (See textbooks, for instance on the study of a compact star using the TOV equation.) 

The purpose of this paper is to address these questions by employing some latest results of the author on relativistic local 

thermodynamics in relativistic hydrostatic equilibrium with spherical symmetry [22-24]. In the work, entropy current and entropy 

density were constructed by the proposed method in ref. [25]. The constructed entropy density was shown to satisfy the local Euler’s 

relation and the first law of thermodynamics concurrently and non-perturbatively in the Newton constant, in which the local 

temperature is exactly coincident with the Tolman temperature [26]. On top of this, the established local thermodynamics was applied 

to such a hydrostatic equilibrium system with uniform energy density and the relativistic stellar structure was completely determined 

http://www.tsijournals.com/
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with the analytic expressions of all local thermodynamic observables. A lessen derived from this simple application is that the TOV 

equation and two gradient equations for gravitational mass and the Tolman temperature form a closed set of differential equations 

with one equation of state given. Based on these results, the author puts forward that the TOV equation and two gradient equations 

for the gravitational mass and the Tolman temperature are the relativistic structure equations for spherically symmetric hydrostatic 

equilibrium upgraded from the traditional stellar structure equations. A nontrivial point in this proposal is that the proposed relativistic 

structure equations do not contain variables on rate such as luminosity and energy production rate, so that they cannot be obtained 

simply by extending each traditional non-relativistic stellar structure equation to the relativistic one. Then the main issue of this paper 

is twofold: whether the proposed structure equations can reproduce the classic stellar structure equations leading to important stellar 

properties, and whether any new significant consequence can be drawn from the proposed relativistic ones properly. The goal of the 

paper is to answer these questions positively and provide evidence for validity and efficiency of the proposal. This is not trivial at all 

taking into account the fact that the proposed relativistic hydrostatic structure equations have less number of equations and that of 

variables as well. To the end, firstly, the setup of a relativistic hydrostatic equilibrium system with spherical symmetry is fixed and 

the necessary and sufficient set of the proposed structure equations is explicitly presented in section 2. It is pointed out that the 

proposed temperature gradient equation is consistent with a thermodynamic relation known in the ordinary thermodynamics and thus 

it is expected to hold for any local thermodynamic equilibrium system. Then the relativistic Poisson equation is derived 

nonperturbatively in the Newton constant, and it is converted into the differential equation for the Tolman temperature using its 

relation to the gravitational potential. This is the steady-state heat conduction equation exactly holding in this curved spacetime and 

plays a key role to determining the hydrostatic structure. In section 3, the proposed hydrostatic structure equations are applied to the 

construction of a model with multilayer structure of luminous stars including the Sun. Through this application, advantages of the 

relativistic extension of the structure equations become transparent. One of the advantages is seen in the temperature gradient 

equation. In the conventional stellar structure equations, the temperature gradient equation needs to be chosen as either (1.2) or (1.3) 

suitably in accordance with the way of energy transportation, or is newly computed by using the so-called mixing length theory [27, 

28]. In the proposed ones, the temperature gradient equation is unchanged regardless of transport phenomena and the energy transport 

of fluid is described by its equation of state. In particular, it is shown that a simple fluid whose pressure is proportional to its energy 

density satisfies the conventional temperature gradient equation in a convective zone (1.3). Such a simple fluid can be realized by an 

ideal gas of particles with conserved particle number current, which is called baryonic particles. This model predicts that the heat 

capacity ratio is almost one in any Newtonian convection zone such as the solar surface. A characteristic feature of this new 

hydrostatic equilibrium model is that the steady-state heat conduction equation can be solved exactly and thermodynamic observables 

are determined non-perturbatively in the Newton constant. They exhibit the power law behavior with the power law index related to 

the heat capacity ratio and implies that this model can be used to describe an ionized state of fluid and a plasma one in stellar corona. 

An interesting feature in this model is that pressure is totally well-behaved and vanishing at the asymptotically far region. This result 

conflicts with the earlier one obtained by using the non-relativistic Newtonian gravity, and it concludes that the Newtonian 

approximation is not valid any more in stellar corona [29]. After applying to an ideal gas of non-relativistic particles to determine the 

local temperature by perturbation in section 3.2, an analytic stellar model is investigated as the hydrostatic equilibrium of two types 

of ideal gases of baryonic particles and non-relativistic ones in section 3.3. In the model, the ideal gas of baryonic particles forms a 

layer of the main stellar material and that of non-relativistic ones does a layer of atmosphere such as photosphere. In addition, by 

considering a situation with the system coupling to radiation, the luminosity can be related to the local temperature, which leads to 

the relativistic extension of the conventional temperature gradient equation in a radiation zone (1.2). A summary of the multi-layer 

stellar model is given in TABLE 1. 

http://www.tsijournals.com/
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Table 1: A simple example of an analytic multi-layer stellar model is shown. In each layer, the local temperature and energy 

density determined in the main text are shown. In the column of ’Matter’, the symbols ’NR’, ’B’, ’γ’, and ’D’ mean ’Non-

Relativistic particles’, ’Baryonic particles’, ’photons’, and ’Degenerate matter’, respectively. The reason why photon is 

enclosed by bracket is that it is not involved in the stellar structure equations. 𝒓𝒓𝑯𝑯 = 𝟐𝟐𝑮𝑮𝑵𝑵𝑴𝑴⋆
𝒄𝒄𝟐𝟐

,  𝒓𝒓𝒄𝒄 = � 𝟑𝟑𝒄𝒄𝟐𝟐

𝟖𝟖𝟖𝟖𝑮𝑮𝑵𝑵𝝆𝝆𝑪𝑪
, M⋆ is the stellar 

gravitational mass, γb is the heat capacity ratio of the ideal gas of baryonic particles, while ν∗ is given by (3.19), n̂ g  (3.12),

T⋆(3.41), R⋆(3.42), T(R∗) (3.22), R∗(3.27), in the main text. It is possible to pile up another layer with boundary conditions 

connected smoothly. 

Layer Region Temperature T Energy density ρ Matter 

Empty  𝑅𝑅⋆ ≤ 𝑟𝑟 ≤ ∞ 𝑇𝑇⋆�
1−𝑟𝑟𝐻𝐻𝑅𝑅⋆
1−𝑟𝑟𝐻𝐻𝑟𝑟

  0 (γ) 

Atmosphere 𝑅𝑅∗ ≤ 𝑟𝑟 ≤ 𝑅𝑅⋆  𝑇𝑇⋆(1 − 𝐺𝐺𝑁𝑁𝑣𝑣∗
2𝑐𝑐2

+ ⋯ 2 3
ˆ( ) n

2 gBm c k T+ NR(+γ) 

Interior cR r R∗≤ ≤
12 1

( )
bR

T R
r

γ
 
 
 

−
∗

∗
 
 
 

 
2

( ) RR
r

ρ ∗
∗

 
 
 

 NR+B(+γ) 

Core 0 cr R< ≤
2 2

2 2 2 2

2
( )

3
c c

c
c c c

r R
T R

r R r r

−

− − −
cρ D 

Section 4 is devoted to summary and discussion including open problems and future works. 

Relativistic hydrostatic structure equations 
In order to generalize the hydrostatic structure equations so as to include the relativistic effect, a hydrostatic equilibrium system needs 

to be formulated to respect general covariance. Such a system with spherical symmetry was studied in [18, 26, 30, 31]. In which the 

line element generally takes the form such that 

( ) ( )( )2 22 2 2 2µ
µg dx dx e cdt e dr r d cos dν ν λ
ν θ θ φ= − + + +           (2.1) 

where ν, λ are functions of the radial coordinate r, and the energy-stress tensor is of the form of a perfect fluid 

( ) ,  µ
µ µ

u uT P Pg
c c

ν
ν νρ= + +                                               (2.2) 

where ρ is local energy density, P is local pressure, uµ is the four fluid velocity. Note that c2ν/2 corresponds to the gravitational 

potential probed by a point particle in the weak gravity regime, so ν itself will be also called the gravitational potential for convenience 

[23]. The balance between the gravitational attractive force and the repulsive one of fluid is described by the Einstein equation, which 

reduces in the comoving frame to 

' '( )
2

PP vρ+
= −              (2.3) 
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'
2

18 ere G
c r

λ
λ ρλ π −

= −     (2.4) 

'
2

18 P ev re G
c r

λ
λ π −

= −    (2.5) 

where G:= GN/c2. Eliminating λ and ν leads to the TOV equation [18]. 

'
2

2

3

2

(( ) 4 )

(1 2 r

rG ĚPP
GĚc r
r

P

c

rπρ

−

++
= −    (2.6) 

' 24rĚ rπ ρ=             (2.7) 

where 𝑬𝑬�𝒓𝒓 is defined by 𝑬𝑬�𝒓𝒓 ≔
𝒓𝒓𝒄𝒄𝟐𝟐

𝟐𝟐𝟐𝟐
(𝟏𝟏 − 𝒆𝒆− 𝛌𝛌) Note that  𝑬𝑬�𝒓𝒓 has the dimension of energy. Employing the method given in one can 

construct entropy current and entropy density as a conserved current and a conserved charge density for this system [24, 25, 32]. A 

key to the construction is to find a vector field ξµ to satisfy a differential equation such that 𝑻𝑻𝒗𝒗
µ𝛁𝛁µ𝛏𝛏𝒗𝒗 = 𝟎𝟎.  

This vector field enables one to construct a conserved current as 𝑱𝑱µ = �−𝐠𝐠𝑻𝑻𝒗𝒗
µ𝛏𝛏𝒗𝒗 and a conserved charge as 𝐐𝐐 = ∫ 𝐝𝐝𝟑𝟑𝐱𝐱𝐱𝐱𝐭𝐭 in general. 

In order to find conserved entropy current for the fluid, we find such a vector field ξµ to be proportional to the fluid velocity uµ . The 

entropy density constructed in this way was shown to satisfy the local Euler’s relation and the first law of thermodynamics 

concurrently and non-perturbatively in the Newton constant in the comoving frame [24]. 

,Ts u Pv Ts u Pv= + ′ = ′ + ′                                                                         (2.8) 

Where 2v r cosθ= 2v r cosθ=

1
2

2
2

1 2 ,rGĚv r cos u v
rc

θ ρ
−


 


−


=


=  is the internal energy density, 𝑻𝑻∝𝒆𝒆

−𝒗𝒗
𝟐𝟐  is the local temperature

given by Tolman [26]. In particular, it was shown that the entropy density does not depend on the radial coordinate, which is a natural 

consequence for a steady state with vanishing heat flux in the energy stress tensor. Using (2.3), one can derive the temperature gradient 

equation as [24]. 

PT T
P ρ

′
′ =

+
   (2.9) 

Plugging (2.6) into this leads to 

( )3

2 2
2

4

1 2

r

r

G Ě r P
T T

GĚc r
rc

π+
′ = −

−
 
 
 

    (2.10) 

This temperature gradient equation (2.10) and the TOV equation (2.6) with (2.7) form a closed set of differential equations, and this 

set of three differential equations is proposed as the relativistic extension of classic stellar structure equations.  

Comments are in order. Firstly, the temperature gradient equation (2.9) involves only thermodynamic variables and their gradients, 

which suggests that a corresponding relation exists in global thermodynamics on flat spacetime. The answer of such a thermodynamic 

relation is, 

http://www.tsijournals.com/
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, ,

,
V N T N

P U
T P

T V

∂ ∂
= +

∂ ∂

   
   
   

                                                                (2.11) 

since this can be rewritten as 
,V N

P T
PT ρ

∂
=

+∂

 
 
 

, where 
,T N

U
V

ρ
 
 
 

∂=
∂

and the thermodynamic variables with overline stand for 

global quantities used here only [1]. It may not be so trivial to obtain the local thermodynamic relation (2.9) from (2.11), because the 

energy density ρ appearing in the energy stress tensor and the internal energy density u in the thermodynamic relations are different 

on curved spacetime, which could make it difficult to presume (2.9) from (2.11) without knowing the correct forms of the laws of 

local thermodynamics. Therefore the relation (2.9) is expected to hold for any local thermodynamic equilibrium system. Secondly, 

as is clear from the above derivation, there are several equivalent expressions for the temperature gradient equation. (2.10) may be 

useful for numerical analysis, while (2.9) or (2.3) may be more useful for non-numerical one. Which expression is best to be used 

will depend on context of analysis. Thirdly, although the constructed entropy density does not play any role in the structure equations, 

the existence thereof has important implications. One is that this ensures the validity of the definitions of the macroscopic quantities 

such as the temperature and the internal energy due to the fact that they satisfy the local Euler’s relation and the first law of 

thermodynamics. Another is to assure the system to be in a local equilibrium, which justifies to solve the hydrostatic structure 

equations by assuming the distribution of an ideal statistical ensumble for local thermodynamic quantities. This point together with 

(2.9) will become important to include the temperature effect dynamically. In earlier study, the TOV equation (2.6) and (2.7) were 

used to determine the behavior of pressure and density by solving them combined with an equation of state with respect to pressure 

and density only but they can be used to determine the local temperature and include the thermal effect incorporating the temperature 

gradient equation (2.9) [23]. Finally, on the non-relativistic reduction, it is easily seen that the TOV equation with (2.7) reduce to the 

non-relativistic hydrostatic equation (1.5) with (1.4) in the Newtonian regime where  

3 2

2, ,
4
  N rr GP P r

r c
ĚĚρ

π
   so that 2 2, r rĚ Mc cρ →→  

On the other hand, it needs some preparation of setup to reproduce (1.2) and (1.3), so it will be confirmed later. 

 

 

General relativistic Poisson equation and steady-state heat conduction equation  
Before moving on to detailed applications of the proposed relativistic hydrostatic structure equations, it is convenient to investigate 

how to determine local temperature from them. From the definition of  𝐸𝐸�𝑟𝑟  and (2.5), a concise expression of  𝐸𝐸�𝑟𝑟with respect to 

thermodynamic variables is derived as 
2 2

3' 8

2(1 ')r

c r v r P
GĚ

rv

π−
=

+
                                                                                    (2.12) 

with ν ′ = −2T′/T.2 Differentiating both sides with respect to r and using (2.3) and (2.7), one finds, 

2 2
2

2 ' 4" ' (( ' 1)( ' 2) (2 " '( ' 3) 6) ) 0v Gv v rv rv r v rv rv P
r c

π ρ+ + − + + − + − − =                      (2.13) 

This can be rewritten into a general coordinate invariant form as, 
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2
2

8 (g 2 )TGv u u
c

ωµ ω µπ ωµ∇ = +                                                                (2.14) 

which is the general relativistic extension of the Poisson equation. To prove this, first compute the Laplacian acting on the scalar field 

ν as, 

2 2 '( " ( ) ')
2

vv e v v
r

λ λ− −
∇ = + +  

2' 4 / ( ( ' 3) ( ' 1) ) 2 /" '
' 1

v Gr c P rv rv re v v
rv

λ π ρ− + + − + +
= +

+
                              (2.15) 

where at the 1st equation the formula 2 1 | |
| |

v g g v
g

ωµ
ω µ∇ = ∂ ∂ was used and at the 2nd one the term containing λ ′ was 

computed by employing (2.4) and (2.5) as  

2 2 2

2' ' 4
2

rGĚv Pe Gr
c r c

λ λ ρπ− − −
= +                                                                (2.16) 

and (2.12) was used to substitute  E�r. The coefficient of ν” in (2.15) is 𝑒𝑒−𝜆𝜆 = 1+8𝜋𝜋𝜋𝜋𝑟𝑟2𝑃𝑃/𝑐𝑐2

𝑟𝑟𝑣𝑣′+1
 while that in (2.13) is 1 + 8πGr2P

c2
=

e−λ(rν′ + 1).  Thus multiplying rν′ + 1 for both sides in (2.13) and subtracting it from (2.15), one can remove ν ′′ in (2.15) and the 
rest is [23].  

2 28 ( 3 ) /v G P cπ ρ∇ = +                                                                          (2.17) 

This matches (2.14) and completes the proof. It is important to stress that the form of the relativistic Poisson equation (2.14) or (2.17) 

has been derived without using any approximation and holds non-perturbatively in the Newton constant.  

The generalized relativistic Poisson equation can be solved order by order in the Newton constant. The leading order is  

22 '" ' 0vv v
r

+ + =                                                                                (2.18) 

This has a trivial solution that ν is constant, while there is a non-trivial one as 𝑣𝑣′ = 1
𝑟𝑟(−1+𝑐𝑐𝑜𝑜𝑟𝑟)

=:𝑣𝑣′⋆ where Co is an integration 

constants. This non-trivial solution corresponds to the exact one of the original differential equation (2.13) in the matter-empty 

region, P = ρ = 0. The integration constant C0 is fixed by plugging this back into (2.12)  

2 2
0

0

8 ( 1 )
2r

c Gr C r PĚ
C G

π − +
=                                                                            (2.19) 

Then evaluate this at a point r = R⋆ so far away from the core of the system that the contribution of the pressure to  𝐸𝐸�𝑟𝑟 is negligible, 

 𝐸𝐸�𝑟𝑟 ≈
𝑐𝑐2

2𝐶𝐶0𝐺𝐺
 with r≥ R⋆ In this far region,  𝐸𝐸�𝑟𝑟 is approximated as a constant and known as the gravitational mass by dividing it by c2 , 

which is denoted by M⋆. Then the integration constant is fixed as 𝐶𝐶0 = 1
2𝑀𝑀∗𝐺𝐺

 and ν⋆ is given by 𝑣𝑣∗ = log �1
𝑟𝑟
− 1

2𝑀𝑀∗𝐺𝐺
� + C0 , where C0 

is another integration constant. This integration constant originates in the arbitrariness of the base point of the gravitational potential, 

which can be fixed by choosing an arbitrary referencing point. Here it is fixed by requesting it to vanish at the evaluation point: ν(R⋆) 

= 0. Then the gravitational potential in the matter-empty region is determined as, 
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*

*
*

*

21
log 21

M G
Rv M G
r

 − 
 =
 − 
 

                                                                                   (2.20) 

This exact gravitational potential in the matter-empty region is expanded with respect to the Newton constant as, 

* *
*

1 12 ...v M G
r R

 
= − + + 

 
                                                                              (2.21) 

This leading term describes the Newton’s law of universal gravitation for an object of the mass M⋆, which is the origin of the name 

of M⋆ mentioned above. As a result the evaluation point r = R⋆ should be chosen to satisfy the pressure at the point P(R⋆) to satisfy 

an inequality 

2 3 *
*

*

( )c 4 P RR
M

π                                                                                          (2.22) 

with R ⋆≫ rH assumed. Accordingly the behavior of temperature in the matter-empty region is exactly determined as [24]. 

*2
* *

1
( ) ( ) :

1

H
v

vac
H

r
RT T R e T R Tr
r

−
−

= = =
−

                                                               (2.23) 

where rH := 2M⋆G is the radius of the horizon of the (Schwarzschild) black hole whose mass is identical to the stellar gravitational 

mass. The local temperature is formally divergent at the location of the horizon radius. It can be confirmed that (2.23) satisfies the 

differential equation " ' ' 22( ) 3 0vac vac vac vacT T T T
r

+ − = , which is identical to the leading order of the relativistic Poisson equation 

written in term of the local temperature as, 

22( " ') 3 'T T T T
r

+ −                         

2 2 2 2 2 2
2

4 ( ( 2 ' 3 ' ) (4 ' (2 " 3 ') 3 ))G r T rTT T P r T rT rT T T
c
π ρ= − + − + − − −                                              (2.24) 

This is the relativistic steady-state heat conduction equation for a relativistic hydrostatic equilibrium system with rotational symmetry. 

The next-to-leading order of the general relativistic Poisson equation in the Newton constant is determined by expanding the 

differential equation (2.13) as ν = 𝑣𝑣0 + G𝑣𝑣1 + O(𝐺𝐺2) with ν0 constant and taking the leading term as, 

" '
1 1 0 02

2 8 ( 3 )v v Pr c
π ρ+ = +                                                                             (2.25) 

where ρ0, P0 are the leading order of the energy density and that of the pressure, respectively. In terms of the variable of temperature, 

the next-to-leading order of the relativistic Poisson equation is given by, 
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" ' 0
1 1 0 02

42
( 3 ),

T
T T P

r c

π
ρ+ = − +                                                                    (2.26) 

where 𝑇𝑇 = 𝑇𝑇0 + 𝐺𝐺𝑇𝑇1 + ⋯ with T0 constant. Inputing detailed information on fluid and solving the differential equation (2.25), (2.26) 

gives the subleading correction of the gravitational potential, the local temperature, respectively. Comments are given below. Firstly, 

a perturbative solution for (2.13) or (2.24) obtained this way is useful in a weak-gravity regime with energy density and pressure 

sufficiently small such as the vicinity of a stellar surface, while in a strong-gravity region such as the interior of a heavy stellar core, 

more useful information will be obtained by solving the original relativistic Poisson equation directly in a non-perturbative fashion 

with respect to the Newton constant. Secondly, astrophysical observation is basically done in a region far away from the core, so 

r≫rH. Therefore, the condition r≫2GÊr/c2 is assumed for practical results in what follows. In particular, this condition is satisfied in 

the Newtonian regime mentioned above. 

Applications 
In this section, the relativistic hydrostatic structure equations proposed in the previous section are applied to constructing a model of 

luminous stars. This application also demonstrates how classic results on a luminous star are reproduced or modified with taking into 

account the effect of general relativity and how to determine local thermodynamic observables inside a luminous star. 

 

Ideal gas of baryonic particles 

To the end of the construction of a model of luminous stars, first consider a locally hydrostatic equilibrium system of a single ideal 

gas of particles with conserved particle number current, which are called baryonic particles in this paper. The equation of state of an 

ideal gas is, 

ˆ ,BP nk T=                                                                                           (3.1) 

where 𝑛𝑛�𝑣𝑣 gives the ordinary particle number density and kB is the Boltzmann constant, while the conservation of the particle number 

current requires that 𝛻𝛻µ𝐽𝐽µ = 0, where 𝐽𝐽µ =  𝑛𝑛�𝑢𝑢µ . The left hand side is computed in a radially moving frame as ∇µJµ =  ur (𝑛𝑛�′ +

𝑛𝑛�(log(�|𝑔𝑔|𝑢𝑢𝑟𝑟  ))′ ). A relativistic fluid equation derived in [24] rewrites this as ∇µJµ = ur (𝑛𝑛�′ − 𝑛𝑛�  𝜌𝜌′

𝜌𝜌+𝑃𝑃
). Therefore the conservation 

of the number current leads to, 

(𝑛𝑛�′ − 𝑛𝑛�  𝜌𝜌′

𝜌𝜌+𝑃𝑃
) (3.2) 

Substituting (3.1) into this so as to eliminate ˆn and using (2.9), one finds 𝑃𝑃
′

𝑃𝑃
= 𝜌𝜌′/𝜌𝜌. This can be solved as 

,P wρ=                                                                                                 (3.3) 

where w is an integration constant. The fluid for pressure to be proportional to energy density such as (3.3) is called a simple fluid in 

what follows for convenience. To fix the integration constant, recall that the energy density of an ideal gas is given by u=nCV T, 

where CV is the heat capacity at constant volume and 𝑛𝑛 = 𝑛𝑛�𝑣𝑣. This can be rewritten as ρ = 𝑛𝑛�𝐶𝐶𝑉𝑉 T. By substituting this and (3.1) into 

(3.3), the integration constant can be fixed as, 

1,B
v

kw C γ= = −                                                                                     (3.4) 

where γ = CP /CV is the heat capacity ratio. Here CP is the heat capacity at constant pressure and given by the Mayer’s relation as 

CP=CV + kB, which is guaranteed to hold by the laws of thermodynamics confirmed above. Plugging (3.3) into (2.9) with (3.4), one 

obtains, 

http://www.tsijournals.com/


www.tsijournals.com | July-2023  
 

10 
 

' '1
1 .

T P

T Pγ
= −

 
 
 

                                                                           (3.5) 

This is exactly the saturation point of the inequality of the Schwarzschild stability condition for a hydrostatic equilibrium system and 

known as an equation of state characteristic to a convection zone, in which the energy transport occurs mainly by convection. On the 

other hand, in order for fluid in hydrostatic equilibrium to satisfy (3.5), it needs to be a simple fluid satisfying (3.3) [33, 34]. As a 

result, the necessary and sufficient condition for energy to be transported by convection is that there is a proportionality relationship 

between pressure and energy density of fluid in the region. Note that the above equation (3.5) can be easily solved as 𝑃𝑃𝑃𝑃𝑇𝑇
𝛾𝛾

𝛾𝛾−1. Thus  

𝜌𝜌 = 𝑎𝑎𝑇𝑇
𝛾𝛾

𝛾𝛾−1, where a is a constant.  

This new derivation of the temperature gradient equation in the convection zone leads to a new important prediction for a general 

property of stars. That is, in a region with the Newtonian approximation valid, pressure is negligible compared to energy density so 

that the parameter w almost vanishes [17]. Combining this with the observational fact that the Newtonian approximation is valid near 

the surface of most stars, one concludes that the heat capacity ratio in any stellar convection zone with the Newtonian approximation 

valid is almost one. This is consistent with a result in fluid dynamics on flat spacetime that an isentropic fluid satisfies a polytropic 

relation 𝑃𝑃𝑃𝑃𝜌𝜌𝛾𝛾. 

1γ −                                                                                             (3.6)  

In particular, it is known that there exists considerably large convection zone underneath the solar surface [35, 36]. Therefore, it 

follows that fluid near the solar surface has the heat capacity ratio nearly equal to 1. This is a robust prediction newly made in this 

paper. The deviation of the heat capacity ratio from one will be described by stellar global observables as (3.28) later. 

 

 

Power law behavior of thermodynamic observables 

The radial dependence of temperature is determined by solving the relativistic steady-state heat conduction equation (2.24), which 

reduces to, 

'2" '2T 3T T T
r

 
 
 

+ −  

( )1 2 '2 2 " 2 2 '2 " ' 2
2

4 6 2 2 4 2 3 3aG T r T r TT T r T rT rT T T
c

γ
γπ γ−       

= − + + + − − −                                           (3.7) 

This can be solved perturbatively in the Newton constant as illustrated in section 2.1, while this expression implies the existence of 

an exact solution obeying the power law, T=Arn , where A is a nonzero constant and n is a negative number so that the temperature 

increases as it goes deeper into the center. These parameters are determined by substituting back into the differential equation, which 

simplifies to, 

( )
2

2 2 2 21 12 1 4 ( ( 2) 3 2) 0
n n

nA n r aGA n r c n
γ

γ γπ γ γ
+ +

− − −− − + − + =
 
  
 

                                     (3.8) 
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There exists a nontrivial solution if and only if 𝑛𝑛
𝛾𝛾−1

+ 𝑛𝑛 + 2 = 4𝜋𝜋𝜋𝜋𝜋𝜋𝐴𝐴
𝛾𝛾

𝛾𝛾−1(𝑛𝑛(𝛾𝛾 − 2) + 3𝛾𝛾 − 2)𝑟𝑟
𝑛𝑛

𝛾𝛾−1+𝑛𝑛+2 + 𝑐𝑐2𝑛𝑛 = 0. Thus the 

parameters for a nontrivial solution are determined as 𝑛𝑛 = −2(𝛾𝛾−1)
𝛾𝛾

,𝐴𝐴 = ( 𝑐𝑐2(𝛾𝛾−1)
2𝜋𝜋𝜋𝜋𝜋𝜋(𝛾𝛾2+4𝛾𝛾−4)

)
𝛾𝛾−1
𝛾𝛾 . As a result, the relativistic steady-state 

heat conduction equation has been solved exactly as, 

( )
112

2
2

1 1
.

12 ( 4 4)
1

c
T

aG
r

γγ

π γ γ

γ

−
−

=
+ −

−

 
      

 

                                                             (3.9) 

That is, the local temperature obeys the power law. Thus the density and the pressure do so as well, such that 𝑃𝑃 ∝ 𝜌𝜌 ∝ 1/𝑟𝑟2. Therefore 

it concludes that a hydrostatic equilibrium system of a simple fluid exhibits the power law behavior of macroscopic observables. 

 

It is important to stress that this solution cannot be obtained by perturbation in the Newton constant, so that the power law behavior 

cannot be seen by solving the system perturbatively. It is also interesting that the parameters in this solution are given only by data 

of internal stellar fluid and not by external data such as the gravitational mass. From this result, the gravitational potential for this 

model can be also determined as 𝑣𝑣 = 4 �1 − 1
𝛾𝛾
� log � 𝑟𝑟

𝑅𝑅⋆
�. 

 

New model for stellar corona 

The above results of the power law behavior of thermodynamic observables imply that this model is applicable to stellar corona, in 

which temperature is so much higher than the other part of stellar superficial region that gas is almost or completely ionized. This 

suggests that macroscopic behavior and transport phenomena in stellar corona can be investigated by combining plasma physics with 

stellar structure equations. For instance, temperature is predicted to fall off in a power law in solar corona. It was pointed out by 

Parker that combining the result of plasma physics for fully ionized gas with the conventional nonrelativistic hydrostatic structure 

equations leads to non-vanishing pressure at infinity [29]. He speculated on this as a signal of the impossibility for gas in the solar 

corona to reach hydrostatic equilibrium and presumed that the non-vanishing pressure at asymptotic region gives rise to gas streaming 

outward from the Sun called the solar wind, whose existence was suggested by Biermann earlier [37, 38]. The solar wind was indeed 

observed by a spacecraft launched some years later [39, 40].  

 

This is a successful interplay between theory and experiment. However, it is also pointed out that there still remains unsolved issues 

for the corona and the solar wind by using the traditional stellar structure equations and results of plasma physics [41]. In the 

application of the above relativistic hydrostatic model of a simple fluid to stellar corona, however, there is no problem for the system 

to stay in hydrostatic equilibrium. Indeed, not only the local temperature but also the local pressure behave in the power law as shown 

above, which leads to pressure vanishing in the asymptotic region.  

 

This result conflicts with the earlier one obtained by using the non-relativistic structure equations explained above. Then one might 

wonder which result is indeed correct. The answer of the author is that the earlier model contains a flaw in the argument. To explain 

this, one first needs to accept the fact that the relativistic hydrostatic structure equations presented in this paper, which are rigorously 

derived from the Einstein gravity, are more fundamental than the non-relativistic ones derived from the Newtonian gravity. Indeed, 

it has been confirmed that the relativistic hydrostatic structure equations reduce to the non-relativistic ones by neglecting terms due 
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to the effect of general relativity. Such an approximation is valid only in the Newtonian regime, where the pressure is negligible 

compared to other terms. This implies that the Newtonian approximation cannot be justified for a solution such that the pressure is 

non-vanishing at a far distance. More concretely, one of the conditions to justify the non-relativistic reduction, 4π𝑟𝑟3P ≪ 𝐸𝐸�r, is clearly 

violated for such a situation, and the contribution from pressure in (2.6) is not negligible at all. Parker derived the analytic expression 

of the number density for an ideal gas with temperature behaving as the power law by solving the non-relativistic hydrostatic equation 

(1.5), and found that it becomes divergent at infinity while, in the current system of an ideal gas with temperature obeying the power 

law, the number density has been obtained as [29]. 

                                                       

1
2

22

( 1 ( 1) 1ˆ
2 ( 4 4)B B

P a cn
k T k aG

r

γ

γ

γ γ
π γ γ

 − −
= =  + − 

                                               (3.10) 

 

which also obeys the power law and is vanishing in the asymptotic region. The latter fully contains general relativistic effect.  

 

As a result it concludes that the Newtonian approximation is not valid for a hydrostatic equilibrium system in a plasma state such as 

stellar corona. Note that this conclusion does not deny the existence of the solar wind, whose existence must be accounted for by 

another mechanism. It is an interesting future work to study whether a newly proposed model compatible with relativistic structure 

equations can demonstrate any property on stellar corona and make prediction on it. 

 

Comment on application to radiative fluid 

One might wonder that this result is applicable also to an ideal gas of photon or the radiation dominant region, which is described by 

the equation of state (3.3) with 𝑤𝑤 = 1
3
, so 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 = 1

3
𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝛼𝛼𝑇𝑇4, 𝜌𝜌𝑟𝑟𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑇𝑇4. The integration constant a is fixed by considering a surface 

of a layer at which the Stefan-Boltzmann’s law holds, so that a =  4𝜎𝜎𝐵𝐵/c. This layer may be called photosphere, which is 

conventionally specified by a single surface at a certain optical depth 𝜏𝜏̅ = 2
3
 defined by , 𝜏𝜏̅ = ∫ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘∞

𝑅𝑅  where R is a radius of a 

luminous star [12]. This leads to ρrad = 4σB c T 4 , which is consistent with the Bose distribution in equilibrium. Then the behavior 

of the local temperature would be given by (3.9) with the parameters specified above for the radiation dominant region. However, 

there is an important caveat for the application of the relativistic hydrostatic structure equations. That is, they were derived in the 

comoving observer with the perfect fluid, and such an observer does not exist for null fluid. Thus the application of the above results 

to radiation is not supported strictly speaking, though it may be useful merely as a rough estimation. Note that this caveat is also the 

case for the non-relativistic stellar structure equations. The proper analysis to include the effect of radiation to hydrostatic structure 

is left as future work. 
 

Ideal gas of non-relativistic particles 

Next, consider a system of an ideal gas consisting of non-relativistic particles for later use. The equation of state is given by P =  𝑃𝑃𝑔𝑔, 

𝜌𝜌 = 𝜌𝜌𝑔𝑔 , where, 

ˆ ,g g BP n k T= 2 3 ˆ( ) n ,
2g B gmc k Tρ = +                        (3.11) 

where 𝑚𝑚�  is the averaged mass of the non-relativistic particles. This averaged mass is described as 𝑚𝑚� = 𝜇𝜇𝑒𝑒𝑚𝑚𝑢𝑢, where µe is the mean 

molecular weight per free electron and mu is the atomic mass unit defined by 1g/mol. Note that µe can be described by using the 
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weight fraction of hydrogen denoted by X as µe = 2/(1 + X). Then consider to satisfy the temperature gradient equation (2.9), which 

is in the current setup given by (𝑃𝑃𝑔𝑔  + 𝜌𝜌𝑔𝑔)T′ = 𝑃𝑃𝑔𝑔′T. Solving this differential equation, one can fix the form of the particle number 

density as, 
2

3/2
ˆ

e
B

mc
k T

g gn C T
−

=                                                                                               (3.12) 

where Cg is an integration constant. This result is indeed consistent with statistical physics, and the integration constant can be fixed 

to match the Maxwell distribution as 𝐶𝐶𝑔𝑔 = 𝑔̅𝑔(2𝜋𝜋𝑚𝑚�𝑘𝑘𝐵𝐵
ℎ2

)
3
2, where 𝑔̅𝑔 corresponds to the mean internal degrees of freedom of a non-

relativistic particle.  

 

As previously, the radial dependence of temperature is determined by solving the steady-state heat conduction equation. Different 

from the previous case of simple fluid, it is very difficult to solve it exactly, so here it is solved up to the next-to-leading order. As 

shown in section 2.1, the leading order solution for (2.18) is a constant, ν0 = const, so is the temperature, T0 = const, and thus the 

above thermodynamic quantities as well: 

0 0 0ˆ ,g BP n k T=  2
0 0 0,

3 ˆ( )
2 B gmc k T nρ = +

2

0

3
3/22

0 02

2ˆ ( ) .B

mc
k TB

g
mkn g T e
h

π −

=       (3.13) 

Therefore the right-hand side of the next-to-leading order of the relativistic Poisson equation (2.25) becomes a constant, so it can be 

solved as, 

1a (R ) / ( )
b

b
b T R

γ
γρ −

∗ ∗≈                                                                    (3.14) 

where C1, 𝐶̃𝐶1 are integration constants. Plugging this back into (2.12) leads to, 

𝐸𝐸�𝑟𝑟
2 2 4

0 1
3 2

0 0 1

8 3

16 ( 3 ) 6 c ( )

c r c C r

Gr P r C G

π ρ

π ρ

−
=

+ + +
                                                              (3.15) 

Evaluating this at the surface of the inner layer, r= R∗, one finds, 

2 4 4
0 12 * *

* 3 2
0 0 1* *

8 3

16 ( 3 ) 6 c (R )

c R c C R
c M

GR P C G

π ρ

π ρ

−
=

+ + +
                                                      (3.16) 

Where 𝑀𝑀∗ = 𝐸𝐸�𝑟𝑟(𝑅𝑅∗)/𝑐𝑐2. From this, the integration constant C1 is fixed as, 
2 2 4 2

0 0 0* * * *
1

* *

2 (8 ( 3 ) / 3) 8 /

3 6

R M GR P c R c
C

R GM

π ρ π ρ+ + −
=

−
 

2 2
0* *

8
2 / c ,

3
M Rπ ρ≈ −                                                                         (3.17) 

while 𝐶̃𝐶1 is determined to request ν1 to vanish at r=R⋆ as introduced in section 2.1, outside which matter contribution is negligible so 

that (2.22) is satisfied: 

𝐶̃𝐶1= 2𝑀𝑀∗
𝑅𝑅⋆

− 4𝜋𝜋(3𝑃𝑃0𝑅𝑅⋆3+𝜌𝜌0𝑅𝑅⋆3+2𝑅𝑅∗3)
3𝑐𝑐2𝑅𝑅⋆

                                                                          (3.18) 

 

Substituting this into (3.14) yields the solution of the gravitational potential at the subleading order as ν1 ≈ ν∗, where, 
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2 2 3
0 0 *

* * 2

6 ( ) 2 ( 21 12( )
3

P rR r R r R rR Rv M
R r c

π πρ + + + −
= − + 

 
  



  (3.19) 

This solution is valid in an annuls region with R∗ ≤ r ≤ R⋆ and should connect smoothly to the one in the matter-empty region (2.21) 

at r = R⋆, which imposes a condition to satisfy a relation between the stellar gravitational mass M⋆ and M∗ as, 

3 3 30 0
* *2 2

4
4 ( )

3

P
M M R R R

c c

ρ
π π= + + −                                                          (3.20) 

at the leading order of the Newton constant. Then the local temperature is determined up to the next-to-leading order in G as, 

*( )(1 / 2 ...)T T R Gv= − +                                                                       (3.21) 

since T0 = T(R⋆). In particular, evaluating at r= R∗, one can compute the ratio of the temperatures at r=R⋆ and r=R∗ as, 

2 2 3
0 0* * * * * *

* 2
*

( ) 6 ( ) 2 ( 2 )1 1
1 ( )

( ) 3

T R P R R R R R R R R R
G M

T R R R c

π πρ+ + + −
= + − +

 
 
 

   

 

                                         (3.22) 

Note that the solutions (3.19) and (3.21) are applicable for a case with ρ0, P0 general constants.  

For most observed stars, the thermal kinetic energy kBT is much smaller than the rest energy of the constituent particle 𝑚𝑚�𝑐𝑐2 near 

surface. For instance, the temperature of the Sun at the core is estimated as of order 107K≈1KeV/kB, which is even smaller than the 

order of the electron mass. This means that if such a star would consist mainly of the ideal gas of non-relativistic particles, then it 

would collapse and not exist stably. Thus an ideal gas of non-relativistic particles will not be appropriate as main constituent material 

of stable stars. 

 

3.3 Analytic multilayer stellar model 

To the end of the construction of a model of a star with multilayer structure, finally consider the mixture of two ideal gases consisting 

of baryonic particles and non-relativistic ones as an example. The ideal gas of non-relativistic particles here plays a role of non-

conserved particles such as ionized ones, while that of baryonic particles main stellar constituent material. The total pressure and the 

total energy density is given by, 

gbρ ρ ρ= + , gbP P P= + ,                                                                      (3.23) 

where the subscript b is used for baryonic component. The equation of state for an ideal gas of baryons is as usual given by, 

ˆ ,b b BP n k T=    (3.24) 

while the baryonic particle number conservation implies, 

 ˆ ˆ ,b bn n
P

ρ
ρ

′
′ =

+
               (3.25)   

as explained in section 3.1. Substituting (3.24) into (3.25) so as to remove ˆnb and employing (2.9), one finds 𝑃𝑃𝑏𝑏′�𝑃𝑃𝑔𝑔 + 𝜌𝜌� =

𝑃𝑃𝑏𝑏(𝑃𝑃𝑔𝑔 + 𝜌𝜌)′. This can be solved as 𝑃𝑃𝑏𝑏 = 𝑤𝑤𝑏𝑏(𝑃𝑃𝑔𝑔 + 𝜌𝜌), where wb is an integration constant. ρb can be determined in terms of T by 

solving the temperature gradient equation (2.9).  

 

For a realistic situation to a typical star, the local temperature away from the core is much smaller than the rest energy of the non-

relativistic particle per the Boltzmann factor, T≪Tg, where 𝑇𝑇𝑔𝑔 ≔
𝑚𝑚�𝑐𝑐2

𝑘𝑘𝐵𝐵
. In this situation, 𝜌𝜌𝑔𝑔 = 𝑚𝑚�𝑐𝑐2𝑛𝑛�𝑔𝑔, where 𝑛𝑛�𝑔𝑔 is given by (3.12), 
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and Pg≪ρg, so that 𝑃𝑃 = (1 + 𝑤𝑤𝑏𝑏)𝑃𝑃𝑔𝑔 + 𝑤𝑤𝑏𝑏𝜌𝜌 ≈ 𝑤𝑤𝑏𝑏𝜌𝜌. This implies that in the realistic situation baryonic particles are dominant and the 

system can be approximately regarded as a simple fluid near and below the surface, so that the parameter wb is related to the heat 

capacity ratio of the stellar material γb as wb= γb − 1, as investigated in section 3.1.5 The total energy density was determined to 

satisfy (2.9) as 𝜌𝜌 ≈ 𝑎𝑎𝑏𝑏 1

b

bT
γ

γ − , where ab is an integration constant. To fix it, introduce the boundary of a layer of the stellar material 

whose radius is denoted by R∗ and impose the energy density of main stellar constituent material to vanish at the boundary of the 

layer.  

( ) 0b Rρ ∗ =                                                                                    (3.26) 

This fixes the integration constant as 1a (R ) / ( )
b

b
b T R

γ
γρ −

∗ ∗≈
, where 𝜌𝜌(𝑅𝑅∗) = 𝜌𝜌𝑔𝑔(𝑅𝑅∗) ≈ 𝑚𝑚�𝑐𝑐2𝑛𝑛�𝑔𝑔(𝑅𝑅∗) and T(R∗) is the temperature at 

the surface of the lower layer related to the one at the surface of the upper layer as (3.22). On the other hand, the local temperature 

inside the star is approximated as the one to obey the power law as (3.9), ( )
12 1

*
*

bRT T R
r

 − ϒ  ≈  
 

with 
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* 2 12(1 )

*

( 1) 1
( )

2 ( 4 4)

bb

b b b b

c
T R

a G
R

γ

γ

γ

π γ γ

−

−

−
=

+ −

 
 
 

. Substituting the expression of ab into this, the radius of the baryonic layer is 

determined as, 

2

2*
*

( 1)

2 ( ) ( 4 4
b

b b

c
R

R G

γ

πρ γ γ

−
≈

+ −
                                                                    (3.27) 

The physical implication of this result is twofold. One is that a layer with bigger density goes deeper inside the star, which is physically 

preferable and indeed observed in the onion structure of a star. The other is that from this expression the deviation of the heat capacity 

ratio from one can be computed as, 

2*
*2

( )
1 2b

R
GR

c

ρ
γ π≈ +                                                                      (3.28) 

where γb∼1 was used. For the case of the Sun, it is evaluated as γb − 1≈1×10−6 , where the following data were used:

2 3 3 3
*

4
( ) / / 2.7 10 /

3u BR c m a kg mρ π→ ≈ ×
 
 
 

, 8
* 3.5 10

2 2

R R
R m→ = = × , where aB is the Bohr radius, aB=5.3×10−11m. This 

rough estimation implies that the deviation of the heat capacity ratio from one is very small. The total energy density and the baryonic 

component thereof are determined as, 

2
*

*( )
R

R
r

ρ ρ≈
 
 
 

, 

3 1 11 ( )
( )* *1 ( )

Tg T R Tb
b

R
e

r

γ
ρ ρ

− −

≈ × −
 
 
 
 

                                                   (3.29) 

Then the baryonic component of pressure is given by Pb ≈ wbρ, and the baryonic number density is 𝑛𝑛�𝑏𝑏 = 𝑃𝑃𝑏𝑏/𝑘𝑘𝐵𝐵𝑇𝑇.  

 

These results of thermodynamic observables are valid in a parametric region with rH ≪ r ≤ R*, T ≪ Tg. Indeed, these expressions of 

thermodynamic variables develop singularity at the center of the system. This implies the existence of a core layer around the center 

http://www.tsijournals.com/


www.tsijournals.com | July-2023  
 

16 
 

in which thermodynamic behavior changes from the power law. Such a core deep inside a star is expected to consist of degenerate 

matter, so it may be very roughly approximated as a hydrostatic equilibrium state with uniform energy density [22]. The pressure and 

temperature can be analytically computed as follows [24, 42], 

2 2 2 2

2 2 2 23
c c c

c
c c c

r r r R
P

r R r r
ρ

− − −
=

− − −
, 

2 2

2 2 2 2

2
( ),

3
c c

c
c c c

r R
T T R

r R r r

−
=

− − −
                                            (3.30) 

where ρc is the constant energy density, Rc is the radius of the surface of the core,
3

8c
c

r
Gπ ρ

= .  

 

Beyond the layer of main stellar material, r>R∗, the existing stellar matter is only the ideal gas of non-relativistic particles. Therefore, 

thermodynamic observables in this region are already computed in the previous section 3.2. From these data of energy density, M∗ 

and M⋆ are computed from (2.7) as, 

2*
0* 2

1
4 ,

R
M dr r

c
π ρ= ∫

2
* 2 *

1
4RM M dr rRc
π ρ= + ∫ 

 .                                             (3.31) 

The difference of these masses can be estimated as (3.20). If the core layer is negligibly small and the energy density can be always 

approximated by (3.29) inside the star,then M∗ is evaluated as, 

3*
* *2

( )
4

R
M R

c

ρ
π≈                                                                            (3.32) 

This has a simple physical meaning that the total mass of a star can be estimated just by the product of mass density at the surface of 

the baryonic layer and its volume up to a numerical factor 3. To confirm validity of this expression, below estimate the solar mass by 

using it. To this end, assume that the contribution of the atmosphere to the mass is negligible, M⋆ ≈ M∗, and that the radius of the 

upper layer is set to be identical to the solar one related to that of the lower layer as R⋆ ≡ R⊙ = ηR∗, where η is a numerical factor 

greater than 1. On the other hand, the mass density at the surface of the baryonic layer is estimated as 𝜌𝜌(𝑅𝑅∗)
𝑐𝑐2

= 𝑚𝑚�𝑛𝑛�𝑔𝑔(𝑅𝑅∗) =

𝜇𝜇𝑒𝑒𝑚𝑚𝑢𝑢/(4
3
𝜋𝜋𝑎𝑎𝐵𝐵)3, where the number density is 𝑛𝑛�𝑔𝑔(𝑅𝑅∗) ≈ 1/(4

3
𝜋𝜋𝑎𝑎𝐵𝐵)3 with aB the Bohr radius and µe ≈ 1.2 since the weight fraction of 

hydrogen is X = 0.6 for the case of the Sun [43]. This approximation means that the Sun is treated as a dense pack of hydrogens. 

 From these data, the solar gravitational mass is evaluated as, 

3 34
3

3

1
4 ( ) 10 .

4

3

e u

B

Rm
M g

na

µ
π

ηπ
≈ × ≈ ×

                                                             (3.33) 

This estimation yields the same order of the solar mass, M⊙ = 2.0 × 1033g.  

 

In order to construct a model of a luminous star, consider energy transported by radiation measured by the luminosity Lr. In this paper, 

the luminosity is literally defined as the energy of radiation only flowing outwards across the sphere of radius r per unit time here. In 

some contexts, the luminosity is defined as the net energy flow transported not only by radiation but also by convection in a more 

involved context such as the mixing length theory. The reason to adopt the definition in this paper is because the net energy flow will 

be evaluated by using entropy as TdS. This is evaluated in the background metric (2.1) as 
2 /24 ,rL r e Fλπ=                                                                                      (3.34) 
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where F is the radiative energy flux summed all over the frequencies F = ∫dνFν and Fν is the energy flux component of radiation with 

frequency ν. Now assume that the source of radiation and the absorption body are absent in a region considered as observed in stellar 

surface. Then the energy flux component Fν is related to its pressure Pν by 𝑑𝑑𝑃𝑃𝑣𝑣
𝑑𝑑𝜏𝜏𝑣𝑣

= 𝐹𝐹𝑣𝑣
𝑐𝑐

,  where τν is the frequency-sensitive optical depth 

defined through the absorption coefficient αν as dτν = −ανdr. Therefore 𝑑𝑑𝑃𝑃𝑣𝑣
𝑑𝑑𝜏𝜏𝑣𝑣

= −∝𝑣𝑣
𝐹𝐹𝑣𝑣
𝑐𝑐

. Summing all over the modes labeled by the 

frequency ν leads to, 

' ,Rrad
F

P
c

α= −                                                                                 (3.35) 

where αR is an averaged absorption coefficient called the Rosseland mean. The radiative component of pressure is given by 

' 44
3

B
radP Tc

σ
= , so ' '

3
3

16 rad
B

c
T P

Tσ
= . Substituting (3.35) into this yields, 

'
3

3

16
R

B
T F

T

α

σ
= −                                                                                       (3.36) 

Then using (3.34) one finds the relation between the temperature gradient and the local luminosity as, 

 

'
3 1

2 2
2

3

16 2
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R r

B r

L
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T GE
r

rc

α

σ
π

−
= −

−

                                                                      (3.37) 

This is the relativistic extension of the temperature gradient equation (1.2) for the radiation dominant zone. As a byproduct, one can 

derive a relativistic result on the luminosity by plugging (2.10) into (3.37) as 

3
4

2

3/2
2

64 ( 4 ) .
3

(1 2 )

rB
r

R
r

G E r PL T
c G E

rc

πσ π
α

∨

∨

+
=

−

                                                                 (3.38) 

Indeed, near the stellar surface, (3.37) reduces to (1.2) with taking into account the relation between the Rosseland mean and the 
opacity as R Kα ≈  with ϱ the mass density of stellar matter, as asserted before, while (3.38) reduces to 
 

4
2

64 .
3

B
r r

R

L G E T
c
πσ
α

∨

≈                                                                                  (3.39) 

Note that these expressions for the luminosity are valid in the region with matter present. In the matter empty region, the Rosseland 

mean and opacity vanish, and from (3.36), the temperature is constant. This is consistent with the result of the local temperature in 

the matter empty region (2.23) effectively. To extract physical implication, evaluate (3.39) in the atmospheric layer, .R r R∗ ≤ ≤ 

Near the upper surface, r ≲ R⋆, the pressure is negligible from (2.22), and Er and T are almost constant from (2.12) and (2.23), 

respectively, as seen in section 2.1. Thus 

464 ( )
3

B
r

R

L GM T Rπσ
α

≈


                                                                              (3.40) 
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Here α R⋆ is the Rosseland mean near the upper surface and becomes a constant. This shows that the luminosity in this region is also 

constant, which is consistent with the Stefan-Boltzmann law, Lr ≈ L⋆, where 
2 4 4 BL R Tπ σ=                                                                                          (3.41) 

Here the radius R⋆, which was introduced so as to satisfy the condition (2.22), is de_ned for the Stefan-Boltzmann law to hold at the 

radius, and T⋆ is the effective surface temperature identified with T⋆ = T(R⋆). Then a novel relation is obtained as 

 
2 16 .

3 R

GMR
α

= 




                                                                                            (3.42) 

In order to verify this expression, one needs to estimate the Rosseland mean given by the product of the mass density and the opacity, 

both of which are local quantities depending on measured position. Here, in order to do a rough estimation, evaluate the Rosseland 

mean and the gravitational mass by using the average mass density   in the atmosphere as 

34 ,
3

M Rπ≈   Rα ≈                                                                                       (3.43) 

Then (3.42) can be rewritten as 

9
64 N

R
Gπ

≈ 



                                                                                         (3.44) 

In order to estimate the opacity in the atmosphere  , assume that the temperature in the atmosphere is so high that electrons are 

almost ionized to behave as free particles. This is indeed expected in solar corona. Then the opacity is estimated as /T mσ≈

where Tσ  is the cross-section of the Thomson scattering, Tσ  = 6:7 × 10-29m2 [12, 13, 43]. Using this approximation, (3.44) is 

rewritten as 

9
64

T

Nm

R
G

σ
π

≈                                                                                            (3.45) 

For the case of the Sun, this is estimated as R⋆≈ 3×10-7m, which may not be so bad in comparison to the observed value, R⊙ = 7 × 

108m. It would be interesting to do precise evaluation by using detailed data of the opacity [12, 44, 45]. 

Analytic multilayer solar model 
In order to build a concrete model of a star from the above multilayer stellar model, internal data of the star is necessary. To illustrate 

how to build such a concrete model, here construct a multilayer model of the Sun as an example. It is known that the Sun has a 

convection zone up to around three quarters of the total radius from the surface and the deeper rest is a radiation zone except the core 

[35, 36]. Here, for simplicity, the region of solar corona is neglected for simplicity, and the convective zone and the radiative one are 

both realized by a baryonic layer consisting of an ideal gas of baryonic particles with the heat capacity ratio varying in the layer. 

Since the total solar mass is already estimated correctly as seen in (3.33), below investigate behaviors of local observables 

The surface of the atmosphere starts from the radius R⋆, which is set to the solar one, 𝑅𝑅⋆: = 𝑅𝑅⊙ .The layer of atmosphere continues 

roughly up to the half of the solar radius, 𝑅𝑅⋆: = 1
2
𝑅𝑅⋆ from which the baryonic layer starts. The baryonic layer is roughly divided into 

a convective zone, which ends at the radius 3
4

R R∗ ∗= and a radiative one, which ends at r = Rc and connects to the core smoothly. 
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Here the radius of the core is chosen as Rc := 5rH by hand for illustration. Accordingly the heat capacity ratio starts with 1 at the 

surface of the baryonic layer and increases as it goes deeper. It takes the value 4/3 at the transition point from the convective zone to 

the radiative zone, and 5/3 at the one from the baryonic layer to the core, since the core is expected to be supported by repulsive force 

of degenerate electron gas whose heat capacity ratio is 5/3 [22, 46]. 

The behaviors of local observables inside the Sun are summarized in table 1 and figure 1. Their characteristic values are easily 

calculated as follows. On the local temperature, as an initial condition, T⋆ is set to the solar surface temperature observed by an 

asymptotic observer in accord with the Stefan-Boltzmann law, T⋆ := T⊙≃6×103K. The temperature does not change so much in the 

layer of atmosphere, so that it lasts at the surface of the baryonic layer, T(R∗)≃T⊙. Then it increases as it goes deeper. At the transition 

point from the convective zone to the radiative one, 

( ) ( )
1/2

37 10RT R T R K
R

∗
∗ ∗

∗

 
= ≈ × 

 




, while at the point from the baryonic layer to the core  

( ) ( )
1/2

72 10c
c

RT R T R K
R

∗
∗

 
= ≈ × 

 
.  

 
Figure 1: (a) A schematic picture of solar multilayer structure and (b) the behaviors of local thermodynamic observables are 

drawn. Three local observables are plotted in the same graph even though they have different units in order to describe their 

behaviors concisely 

Note that in the current case, rc≫Rc, so the temperature of the center of the system is almost equal to the one at the surface of the 

core, T(0)≈T(Rc). The core temperature estimated here is of the same order as the earlier one obtained by using the classic stellar 

structure equation [35, 47]. 

On the density, an initial condition is given at the boundary between the atmosphere and the interior, r = R∗, where the density is 

estimated as a dense pack of hydrogens ( ) 2 3 3 34/ / 3 10 /
3u BR c m a kg mρ π∗

 ≈ ≈ × 
 

.  
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Then at the transition point from the convective zone to the radiative one ( ) ( )
2

2 2 3 3/ / 5 10 /RR c R c kg m
R

ρ ρ ∗
∗ ∗

∗

 
= ≈ × 

 




, while at 

the core ( )
2

2 2 12 3/ / 1 10 /c
c

Rc R c kg m
R

ρ ρ ∗
∗

 
= ≈ × 

 
.  

This density at the core is much bigger than the earlier result around 1.5 × 105kg/m3 [35, 47]. In fact, the value is still bigger than the 

known average density of a typical white dwarf around 3 × 109kg/m3 but less than that of a neutron star around 5 × 1014kg/m3 [42]. 

However, this result of high density is in some sense reasonable because the core is assumed to be supported by repulsive force of 

degenerate electrons so its density is expected to be comparable to that of a white dwarf. Accordingly the pressure in the model also 

becomes much higher than the earlier result. 

The behaviors of local observables for this solar model are plotted in figure 1 (b) by determining the heat capacity ratio in each zone 

by the linear interpolation using the boundary values. They are qualitatively different from the earlier ones [35, 47]. It is important to 

stress that the values obtained here are very rough without fine tuning. Therefore they can be possibly made more precise by tuning 

the parameter with more precise data. Such a precise evaluation and further discussion of physical interpretations of these differences 

are left to future work. 

Comment on the Eddington bound 
In the above model of luminous stars, the radiation pressure is assumed to be too small to involve hydrostatic structure [44]. This 

approximated treatment is not used in the mixing length theory, in which both the convective energy flux and the radiant energy flux 

involve the traditional hydrostatic structure equations [27, 28, 48]. This approximation will be valid as long as the outward force 

caused by radiation is sufficiently small compared to the gravitational one produced by matter inside the star: 

| | | | .raddP dP
dr dr

                                                                                        (3.46) 

Using (3.34) and (3.38), one can compute the left-hand side as 1
2

2
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π −

=
−



while the right-hand is already 

computed as (2.6). Therefore the above inequality becomes 
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

                                                                       (3.47) 

where P ≈ wbρ was used. Further estimation of the right-hand side needs to specify the expression of the Rosseland mean. In a non-

relativistic hydrostatic system, the Rosseland mean takes the form of the product of the mass density ϱ and the opacity κ. In a general 

relativistic hydrostatic system, the energy density ρ is more fundamental than the mass density ϱ, so the Rosseland mean is defined 

by using the energy density as αR = κρ/c2 . Then the above can be rewritten as  

3
2

r

3

2

4 ( ) .

(1 2 )

4r
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b
E r P

E
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G
rc

γ ππ
∨
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−

                                                                          (3.48) 
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The right-hand side corresponds to the relativistic extension of the Eddington limit for this stellar model. Indeed, evaluating this 

around a stellar surface with the Newtonian approximation valid, one finds 

4 N
R

cg ML π







                                                                                (3.49) 

DISCUSSION 
The relativistic extension of the classic stellar structure equations has been investigated in the Einstein gravity. It has been pointed 

out that the TOV equation and two gradient ones for gravitational mass and Tolman temperature form a closed set of differential 

equations, and the set has been put forward as the desired relativistic extension of the stellar structure equations. The proposed 

relativistic hydrostatic structure equations have been shown to be endorsed by laws of local thermodynamics.11 From them, the exact 

form of the relativistic Poisson equation has been derived, and it has been converted into the steady-state heat conduction equation 

holding non-perturbatively with respect to the Newton constant by using the relation between the gravitational potential and the 

Tolman temperature. A couple of applications have been presented. One is to a hydrostatic equilibrium system consisting of a single 

ideal gas of particles with the particle number current conserved called baryonic particles. In this system, the proposed temperature 

gradient equation reduces precisely to the conventional one known in the convection zone. It has been predicted that the heat capacity 

ratio almost becomes one in the Newtonian convective regime such as the neighborhood of the solar surface. The generalized steady-

state heat conduction equation has been solved exactly and thermodynamic observables determined non-perturbatively in the Newton 

constant, which exhibit the power law behavior such that 𝑇𝑇 ∝ 𝑟𝑟 −2(𝛾𝛾−1)
𝛾𝛾

,𝜌𝜌 ∝ 𝑝𝑝 ∝ 𝑟𝑟−2 with γ the heat capacity ratio. This result implies 

that this model is applicable to a plasma state and thus to stellar corona. Another application is to a hydrostatic equilibrium system of 

an ideal gas of non-relativistic particles, for which the local temperature has been determined perturbatively in the Newton constant. 

Finally, by combining two ideal gases of baryonic particles and non-relativistic ones, an analytic multilayer structure of luminous 

stars has been presented as a simple example. In this model, the convective zone consists mainly of the ideal gas of baryonic particles, 

while the atmosphere is constituted by non-relativistic particles. This model also admits the layer of degenerate core and the stellar 

corona by changing the constituents suitably. By coupling the system to radiation, the traditional temperature gradient equation in a 

radiation zone has been extended to its relativistic version. In the proposed hydrostatic structure equations, the relativistic extension 

for the luminosity gradient (1.1) is not included. This is simply because structure equations are closed without the variable of 

luminosity. This implies that the variables on rate are not fundamental for relativistic hydrostatic equilibrium. This conclusion is 

actually preferable with taking into account the existence of a non-radiating star which can be described by a relativistic hydrostatic 

equilibrium system. However, this does not mean that the gradient equation for luminosity is not useful in a relativistic hydrostatic 

equilibrium system. Its naive relativistic extension will be given by 

1
2

2

2

4 ,

(1 2 )

r

r
r

dL r
d G

rc
E

π ρε∨=

−

                                                                                   (4.1) 

which could be useful to extract information of the radiant energy production rate ϵ per unit energy for a hydrostatic stellar system 

with radiation. The information of energy production rate becomes important to build a model in detail in particular to investigate an 

evolutionary process of a star as a non-equilibrium open system including dissipation [35] . Further extension including such a 

hydrodynamical process is an interesting future work. An important application of the relativistic hydrostatic structure equations with 

a simple fluid model has been to stellar corona, in which pressure vanishes at the far asymptotic region. This result conflicts with the 
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earlier one obtained by using the non-relativistic stellar structure equations, and what is a flaw in the earlier argument is ignoring a 

term containing general relativistic effect in the stellar equilibrium equation which cannot be neglected in a situation with pressure 

finite in the far asymptotic region. It would be interesting to investigate this model further to solve unsolved problems known in solar 

corona [35, 36]. In the multilayer stellar model presented in this paper, it consists of two ideals gases of baryonic particles and non-

relativistic ones with radiation probed as a simple example. It is also possible to pile up a similar layer or another one consisting of a 

different type of fluid. Such a multilayer structure should be arranged to build a model for each observed star. In the analysis, radiation 

does not involve in the structure equations but just plays a role of a probe of local temperature. This approximated treatment of 

radiation is justified as long as the Eddington bound is sufficiently satisfied and convenient to analyze the stellar system near the 

stellar surface. However the radiative contribution may not be negligible inside the star, in particular, with so high temperature that 

an effective method of analysis is only numerical calculation. It is important to extend the presented relativistic hydrostatic structure 

equations so as to include the radiative contribution. In this paper, the proposed relativistic hydrostatic structure equations have been 

applied to the construction of a model of luminous stars. It would be tempted to apply them to a different type of stars such as a 

compact star consisting of degenerate matter and to investigate the finite temperature effect. A caveat for the application of the 

relativistic hydrostatic structure equations to such compact stars is to include the local chemical potential and temperature so as to be 

consistent with the local thermodynamic relations. It would be of great interest to investigate how the thermodynamic relations shown 

in including chemical potential in such a system is derived and whether such thermal interaction gives rise to any significant effect 

on the system [24]. The author hopes to address these issues and will report the progress in the near future. 
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	This temperature gradient equation (2.10) and the TOV equation (2.6) with (2.7) form a closed set of differential equations, and this set of three differential equations is proposed as the relativistic extension of classic stellar structure equations.
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