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Introduction

Solar Faculae are bright areas of the photosphere that are visible in white light at the disc as well as at the lintbthdthoug
average lifetime of elements in facular field is around 1 hour, these photasphennospheric formations are actually
magnetically structured and are quite entangled with the sunspots in the sense that they precede and succeed the formation c
sunspots. In the Solar Dynamics Observatory (SDO/HMI) magnetograms, the facular sitesetref small magnetic
elements of different polarity, which are constantly moving, apparently under the influence of perturbations from tre granule
and supergranules. Against this background, however, a separate, less mobile, more stabldiaad fangar formations

(facular nodes) that live up to a day or more are observed. Apparently, these objects are located at the junctions of several
convection cells of supergranulation. In these cells rddhakontal plasma flows are observed that concemtsaveral

dozens of magnetic facular elements, which look like separate magnetic flux tubes or bundles, into intersupergranular lanes,
raking them, due to the frozen field in the plama, to the edges of the cells.[¥¥e can thereby assume that thpEsma

flows provide the required stabilizing effect for a prolonged existence of the facular nodes.

In this work, we will investigate specifically such relatively stable and-loregl photospherichromospheric magnetic
formations with characteristicansverse dimensions of up to -siight megameters with magnetic fields from ZWD to

1000 G and having a fine internal filamentary structure on a scale of about 1 Mm or less and apparently supported by external
converging boundaries of two or three ngadwupergranulation cells. The gas temperature in the faculae is few hundred
degrees Kelvin higher than the temperature of the surrounding chromosphere, and the temperature contrast between the
individual bright elements inside the facular node does naezkgrobably, 16200 K. At high angular resolutions (New
Swedish iIm Telescope), the facular fields in the photosphere are observed to possess a central temperature dip in the form of
Wilson's depression and regularncentric segmental brightening [2,3Explanation of the nature of these specific

temperature variations is one of the main tasks of the present model.

There are various kinds of wave and oscillatory processes that are observed in the facular fields. Roughly speaking these
oscillations carbe divided into two classes of different physical nature. The most studied ar@eatiodt oscillations with

periods from 35 to 1015 minutes [46]. They are usually interpreted as manifestations of acoustic and MHD waves running
along magnetic flux tutsein the facula where these flux tubes play the role of resonators or waveguides. Many works have
been devoted to the study of these processes, but they practically do not shed light on actual magnetic structure of a facula
Observing these wave phenomepag can only estimate the phase velocities of the waves in order of magnitude and,
accordingly, obtain the averaged order estimates of the magnetic field intensity and the plasma density. However, recently
there have been reports that lgperiod oscillabns with periods from 1 to 4 hours are observed in facpi#. These
oscillations can no longer be understood within the framework of propagating MHD wave models or within the framework of
the "vortex shedding" mechanism due to the stream flowingdeutbe facula¢9]. Apparently, they reflect the oscillations

of the facula as a whole, as a single magnetic structure. In such oscillations, significant masses of gas are involved and
therefore their periods are sufficiently large. These consideraticeesdgl allow us to take a new approach to the problem of

the structure of faculae and draw definite conclusions about their physical nature.
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However, here we are not going to consider the problem of the oscillatory properties of faculae (it would s=parata

study), but will concentrate only on the construction of their MHD models. One of the first physical models of the faculae
was the "hot wall" moddlL0]. It represents the faculae as a vertical magnetic flux tube penetrating deep into thehehetosp

and right into the upper part of convective zone. It is assumed that the plasma density in such a tube is sharply deduced, an
thus a deep Wilson depression is created which, if viewed from the side, allows us to see through the transparemt tube of th
facula the so called hot layers of the photosphere and the convectivehainvealls. However, this simply overlooks the fact

that when such a flux tube is observed on the limb, the observer's line of sight passes at right angles to the agiallyf the ra
oriented facular tube, and its low layers, its hot walls, are simply not visible in this position. It turns out thathgdodhds

model, faculae cannot be observed on the limb in principle. However, observations show the opposite picageariacul

best seen on the limb! This lack of the model was not¢tilin Nevertheless, observers still refer to this model: Quintero et

al.[12]. Even from a theoretical point of view, the mol] seems unsatisfactory. The expression for the transvalaede
of pressures is considered to be too simig; - P.= B (f8p ) * , where B, is the field at the wall12). The gas pressure

in the flux tubeand the density of the plasma are considered to be independent on radial distance. It will be shown below that
the balance of pressures in a vertical magnetic flux tube and the density distribution in it are described by much more
complicated formulae, angone of the assumptions made in Spruit (1976) are satisfied. Kostik & Khomenko, analyzing the
causes of the observed brightness of facular tubes, likewise come to the conclusion thatwtierhethanism does not

work [13], and the dissipation of MHD was is most likely responsible for the heating of faculae. The another popular

mo del is fAhill ock a md] whitheriasdo desorithecfdcdiae fisoobjects rotreldted t® specific magnetic
structure but possessing enhanced brightnetigiricinities of sunspots mainly due to the upliftinghot subphotospheric

plasma which is otherwise entrapped because of the large magnetic fields near the sunspot. This vertical transfer of hot
subphotospheric plasma according to the authors is adstontake place along different neelected by any physical
mechanism magnetic flux tubes and results in the formation of hot clouds which are actually obgehedbservers as
facul ae. This model accordi ng ture of tacutae amgptherefore can lneonergionédtfor r e p
purely historical reasons.

Formulation of the problem and the governing equations
System of equations of ideal MHD in the steady case has the following form:

r(VOP =R ®4 pF[cuB B] b, @

div(rVv)=0, @
divB =0, 3)
P=r A . (4)

We have used the usual notation for the various physical parametel8, issmagnetic field intensity vectorV is flow
velocity vector of the fluid,P, 7, T, /are pressure, density, temperature and average molar mass of the gas respectively.

The eneigy transport equation which has a very complicated form for solar plasma is-étemmined.
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The formulation of the problem requires the evaluation of stationary distributions of temperature and density which are
calculable for a given magnetic struetuhat could answer maximally the observational properties of the modeled objects.
When such a result is obtained we must explain the correspondence of the observed and theoretically predicted temperature
distribution with a specific heat transfer megfiam in the given configuration. For example, in the case of a sunspot, all
models must predict considerable low temperature of the umbra with respect to the surrounding photosphere because the
strong vertical magnetic fields inhibit the convective motioplama in sunspots. Likewise, when the equilibrium model of

the solar filaments or prominences gives the very cool plasma in their bodies, one can explain the low temperature derived
from the balance of forces as a result of fast cooling of the gas duighdrradiance of dense plasma in the coronal

conditions.

Most probably faculae and floccules share one and the same magnetic flux tube structure. Also it is quite possible that these
structures are heated by wave dissipative processes or by joutglmathanism. Unlike corona which has very low density
and therefore very high temperature, the chromospheric structures like floccules and photospheric structures like faculae are

not very hot because of corresponding high densities in comparison witiaco

Exact solutions to the problems of heat transfer and energy dissipation in active solar elements like sunspots, faculae,
prominences, coronal loops and etc. are now almost impossible not only because of complicated geometry, spatial
inhomogeneity ath tremendous difficulty in 3D radiative transfer calculations in the continuum and in the spectral lines. We
likewise have further difficulties because of our inability to reliably evaluate the contribution of MHD wave dissipation and

electric current heatg (Joule heating) to the energy balance of the given magnetic structure under study.

Boundary conditions of the problem Facular nodes are studied as sufficiently solitary magnetic structures andbtieere
their magnetic field at large heights andlage radial distances from the center of the facular field should attain some
background value.

The demarcation boundary at the bottom of the facular structure is defined as the depth at which the average magnetic

pressure in the magnetic flux tube isqmarable to the dynamic pressure of convective pulsations in the photosphere:

2 2
B r\/turb

8p 2

At the boundary the radial profiles of pressure and temperature should have the typical form where the central region is a bi

lower than the surroutings, and at large distances from the center, the profiles approach photospheric values.

Attributing a circular structure to the facular nodes, we have that at the jgeyipf this magnetic structure, the radial
component of magnetic field vector-ppaches zero and the balance of total pressures on either sides of the object is at
tained as it was well demonstrated in the watkich studied the equilibrium of vertical magnetic flux tubes in the solar

atmospher¢l4]. However, as our calculations shawere is no need to attribute an abrupt sideward boundary to the facular
4
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node in our model because the described parameters steadily approach the background values as we move away from the

center of the object.

Derivation of the governing equation According to stationary ideal MHD, the plasma flow takes place along the magnetic

lines of force:

B
V=M,— (5)

Jap r’

where MA is Alfven Mach number, which is nothing but the ratio of the plasma fluid velocity and the corresponding Alfven

\Y B
veIocity:\T =M, _B . From the equations (2), (3) and (5) follows that:
A

BO fM,\/40 1) e, (6)

i.e. the factor M 4/ 7 is not change along the magnetic field line but can vary arbitrarily as we move to an another field

line.

In general, the plasma flow inside the facular node possibly is small and therefore the condition (6) is satisfiedhsufficient
well simply due the smallness of Alfven Mach number. Nevertheless, we still consider this parameter for the completeness of
the model and this permits us to introduce the angular dependence of the field and to describe fine discrete (filamentary)

structure of the field inside the node. Likewise, the external plasma flow with respect to the facular node remainssubalfven

The supeconvective converging flow is expressed in those terms where the hydrostatic press{iz}of the external

medium at the photospheric level to which a small dynamic comper@rex (Z)\/sﬁper is added up, wheré/super is

the velocity of horizontal flow in supagranulation cells. The height profile for this velocity field is unknown and it is only
possible to give an order of magnitude Va|l‘,1é'uper © 0.3 -0.5%m /<. The Alfven velocity in the chromosplrewith a
magnetic field strength of about 10 G or more is more than 10km/s and therefore Alfven Mach number for external layers of
the facular node isM2 <1.The magni tude of the pl asma ekceedWOKWMéS [@2¢i ty i
The same estimatias quite satisfactory for polar facul§&s] and therefore we can safely assume that the flow field of gas

inside these nodes is subalfvenidl , <1.

We rearrange the L.H.S of tleguation (1), using the condition (5):
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We use the respective vector identity and the relation (6) to get the following equation:

Mal

r(vb)v = ! pﬁ% B’ [eurB |3]3 %\/TQ (8)

We transform the last term in the R.H.S of equation (8) using again the condition (6) to obtain the following equation for

motion:

Mi(BOJB B(B MIP 4p=P [cufiB B] 4pY. 9)

At lastby representing the magnetic part of Lorenz force as

[CurIB3 B] = % BB B B), we rewrite (9) in the fornfil4], which constitutes the base our present research:
y ; B?

@-M)(e OB BE 0OM)- o @ B 4p 0. (10

The idea behind our approach is based upon the experimental observations of the long lived and stable active elements suct
as sunspots, faculae, chromospheric filaments and prominences, we construct the magnetic configuration of these objects ug
to the acaracy of few arbitrary functions and then solve the stationary MHD problem for these magnetic structures and
finally obtain pressure, density and Alfven Mach number from the three components of equation (10). Later, the obtained
pressure and density digtitions are used in accordance with the ideal gas equation to find the respective temperature
distribution. In this way for every given configuration of the magnetic fiBld) we can calculate all the required physical

parameter®, 7, T ,M, for the stationary existence of this configuration. This allows us to compare the theoretically

obtained results with the observed data. The arbitrariness in the expression for the magnetic field allows us to freely choos
the nost relevant function that best fits the observed data. The proposed problem in the present work is similar to that which
was used for modeling the sunspti].

Magnetic structure of steady facular configuration

We shall assume that the magnetic fielebof configuration under study is not twisted i.e. the field has only two independent

components but both of them are dependent on all three coordinates in the cylindrical £y§(;ce,rZ():

B={B(r/,2e.0 & B(r, / 28} (12)

The zaxis is directed along the major axis of the cylinder and the gravitational force is represerﬁ@i by: - :gez The
azimuthal component of thequilibrium equation (10) for the magnetic field given by (11), \ﬂ;thz 0, reduces to a

following simple form:
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BZ
_(p+—) 9. (12)
2
From the above expression we get the important formula for the pressure balance as:
. B*(r,/ ,2)
P(r/j,2)+——— = @,2). (13)

The function P (I’,Z)can beclearly interpreted as the total (GasMagnet i c) pressure which

cylindrical angular coordinate but preserves the dependencaratz. Far away from the node one has the following form:
B..(2
P(m,2) 227 R.(2, (14)

whereB,,is the external magnetic field strength with respect to the given magnetic configuration (Oblgjgdsty e s n 0 t

depend on the size of the considered structure and also on thd angle case of small external fields we have

P ( g, Z) :Féx( Z) , WherePeX( Z) is the gas pressure in the external medium. Though thenesiltscale turbulence

in the photosphere we can fairly assume that the external medium is hydrostatic:

P.(z
HR.(2) _ gr.(2) . (15)
pz

2
The addition of smalilynamic pressur@.5/'ex (Z)VSuper to the Pex( Z) and by considering (15), one obtains equation for

P..(2) andr ., (z) which can be solved by successive iterations and thereby easily cortietihgdrostatic model for the

d

external medium. Calculations demonstrate that the above corrections are quite small i.e. they are small by two orders of

magnitude with respect to the initial values. Therefore we can restrict ourselves to the additionsofahéerm

2
O'5rex (Z)\/Super to the hydrostatic profiIePex( Z) at small photospheric heights.

We now write down equations for two other components in the equation (10) by substituting expression (13) in the R.H.S.
@- MH)a, B, o B,a_ (1uM (1 M?3)-0
A éz + B B‘} A) B A) (o}
o ¢ Mz no- 4 Zd rqeg =
F( Z) (16)

=gr(r, £,2) +———

AN 2 2 A
(1_4MA) a 3 Br + B a'l /gz (l “‘ M (1 MA 8 H_F\’F,Z) 17
o ¢z 94 rg = ro 17

Now we determine the components of the magnetic field with the help of the magnetic flow function. Simplifying equation

(3) interms of cylindrical coordinates, we get:
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H_BZ"'E_urBr ol (18)
wZorop

r
It follows that the longitudinal and radial fields must be expressed in terms of the fur@!{d‘n Z) - Ia Q rdr and

some arbitrary dimensionless function of the magnetic flow and the angular cooFel(/e ) :

1 uA(r 2).
g
1 PA(r,2) z) (19)
Wz

B, istaken as the unit for the measurement of magnetic field strength. By a simple substitution of these expressions in (18),

B,(r/,2)* BF(A /) b(r2; Q(r2d =
B (r/,z2)* BF(A /) b(r,2; b(r, z)—

one can see that the magnetic field given by (19) is conditionally solenoidal for any arbitrary differentiable function
F(A,/ ) . The dependence of the functibron the angular coordinate can be arbitrarily defined, for example in such a
simple type:

F*(A/)=1 +(A /) E atk Dsin(nd), (20)

wheref (A )is the positive oscillating component with decreasing amplitude as we move above in height because of

decreasing magnetic flow. In (20)a, m are some positive coefficient& = (1Mm)'1is the reciprocal height scalehich

was introduced to rewrite equation (20) in a dimensionless form. The large valoesllofv us to describe fine discrete
structure inside the facular node due to the combination of radial and angular dependence in equd&d@.(2D) In
particular, the circular and semicircular structures can be described which are usually observed in the facular fields at hig

angular resolutioni2].

If there is no angular dependence, than=1
By substituting expression (18) the formulas (16) and (17) we get:

B? €3 5a IpL M In(u M2 r,
0 MDFH(A) 1 ek D Gann BER) R TLY GRELD gy
D & n oI zZu rp = rr
€3 68, ., Ip@ M In M2) 02
- M2)F2(A/ )_%@”b +b,—bz 8 Ind M) t;..q(ll—A)' 0
&z n ¢ z| FH = (22)
=gr(r, j.2) HRrz)
Uz
The R.H.S. of the expression (21) doesnd6t contain the an
g- MZ(r/) B*(A, /) €A (23)
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whered ( ¢s)some positive function of the magnetic flow which is independent of the angular coorltirthie case, the
expression gl.- MZ(r/ ) depends on A ang only, and therefore the small logarithmic terms in the second round

brackets of the L.H.S. of the equations (21) and (22) identically equal to zero due to Equati@mél8}) the cofactors in
the L.H.S. of (23) is less than unipnd the other is oscillatory above one. Considering that the funEtisnchosen

sufficiently arbitrarily one can také = 1 for the simplification of the model which then leads to the following:

1 _f
MZ=1 = =—_ 0
F2 1+f 4

2 _ 2
In the limiting case whef =0, one hasM AT O. As f approaches tol, we gM A % and if f>3 we

2 —
haveM 3 = 1. if we take C = CONSt 1 then in all the formulas below we must use the proudd, instead of
Bo . In principle, this will not affect the results of theodel, only the numerical estimates of the magnetic field intensity in

the faculae will slightly change. For example, we should use 1100 or 900 G instead of 1000G.

In this way equations (21), (22) take the form:

% +p P OKRNZ)

Fr—— 0O ’ (25)
4p 8 2 Y
2 o ~
i%z “bz+br P 8 L) gr(r, /2. (26)
p & |z R 2 zu

The L.H.S. of the equation (26) do edsnteddisapdearp forrthe distribution bfe a n

plasma density which in our configuration happens to have an axially symmetric form: £r,z) .

The expression (25) with the help of (14) is integrated with respeacfraom some point of the node to an another point
infinitely distant from the node:

P(r.2) = q 27 rdrgFF(z) By
“8p I e 8 p- 27)

SubstitutingP (I, Z) in (25) we get:

r(r,z)= (2 +

LB, b pa, bu . 6 4 pB
33 it rd . (28)
98;7e ur ngpz 7oA BB pg 2

The balance of pressures given by (27) with axial symmetry can be rewritten as:

LD ey rery, 09

P(r,z)= Kr,2
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W, @B(r,z) B
Wherer(I', z)= dr U0 o - 8 p ? represents the deviation of gas pressure imtige from
u i

the corresponding hydrostatic distributiBy) ( ) due to the magnetic field. Analogously the expression for the density of gas

can be written as:

2

_ u B,
r(r,z)= ¢ — oA
(r.2)= (2 80 A1, 2, (30)
B1é2y | pa, b b, ¢

where 1 (r,z) = — bzz Zﬁ— dr ¢is the deviation of density from the corresponding
AV

80 g& W

hydrostatic distribution/ _, (z) owing to the presence of the magnetic field in the node.
For the asymmetric case the equation (3@ unchanged as the density distributio

obtain a dependence on angle in the equation (29) because of the followi(ternz,/ ) :

B*(r.z/)

P(r,z,/ )= Rr,2) &

B(2 Bt z)), (31)

g B(r,zj) B?
ub QM —+is dependent on the angle corresponding to the

8p 8 ,

where P.(r,z,/ )=

glf

additional magnetic componeBf (r,z,/ ) .

2
In the obtained formulas the important uncertainty is constituted by the term contaé'rﬁiﬁﬂgndthe derivative of it with

respect to height. To consider these, we must introduce an extra hypothesis. We are going to consider the simplest possible

form: B,, = const =2 C, which corresponds to the global magnetic field strength at the levied gfiotosphere. This field

varies with height by the scale of hundreds offi6],WwHichissands

considered here, these changes are negligibly small and the expression for the density of the gabd3fnsidered free

of the small term— 1 1B, =

8 pz
The expressions (29), (30), (31) with the known functiggls, (1, ), B,b (r, Z)allow us to calculate the distributions of

gas pressure and gas density in stegtionary facular node. As one can notice, the exact evaluation of the magnetic force

gives the equation which is considerably complex in comparison to the usually used simple equation of pressure balance

-1p2
P+ (8,0) BZ —F;X which is true only in th absence of the radial field, gas flow and angular dependence.
We underline that by the substitution of the potential magnetic field in (30), the furictignz) , one immediately obtains

zero. At the same time the zero of the functiBp(r, z,/ ) demands in the correspondence with the physical meaning, the

10
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absence of plasma flo 2 = 0 and the azimuthal variation of the fiefe® =1. This test serves as means of check to the

correctnessf all the carried out calculations.

The structure of the magnetic field in the facular node

To describe the magnetic structure of the node, we use as an initial approximation the following solution obtained by
Schatzman (1965) in its potential limit:

B, = B Jy(knexp(-k(z -)),
B =B J,(knexp(-k(z -)), (31)

The above distributions are obtained from the following magnetic flow function
er
A=B g J(knexp(K(z 7)) - (32

Here J, (kr), J,(Kkr) are the Bessel functions of zeroth and first ord&sis the magnetic field strength at the level of the

Z= 7, k= (1Mm)'1 is the reciprocal height scalafter the substitution of the expression for potential magnetic field

(31) in the obtained formulae for the gas pressure and gas density, one naturally gets unperturbed backgroasdhealues
magnetic force of the potential field is zero. To get the-patential force configuration, it is needed to introduce the
respective corrections into the magnetic structure (31). We introduce two needed corrections into our model as follows: (i)
angular dependence given by the functiofsee formula (20) anBIG. 1), and (ii) thesubstitution of the exponents in (31)

by the expression:

7(2) = 1
~expbk(z- ) 4’

This expression describes a distorted step (well known in quantum mechanics as thBifeergtistribution): the positive

(33)

coefficientb defines the order of distortion of the step, larger valudslead to abrupt edge of the step. HeZg is some
level of the coordinate system where the step is reduced to one half, and therefore in the c&beve should take into
account thatB, in the formula (31) will be different fra B(0), i.e. from the magnetic field strength at the starting level

z=0. Forz > zthis function approaches to exipka, and therefore for the magnetic field to approach a potential form at

large heights, we must introduce the same coeffidientthe argument of the Bessel functions (31).Then the magnetic field

flow with new variables takes the following fornfA = % x (kY ZMKy, wherex = br, and the components of the

field are expressed a8, = J, (bk) & bk, B 8 X bKr( @ DbRYE, where the derivative is taken over the

argumenbkz For Z< 7, the magnetic field in the flux tube whigoes down stops to be dependent on the dépe Q).
For the calculations, we will takg, = 0.125Mm, and the level of the photosphere is considered as the levelz\vditd .

For this case:B(0) = 0.62246 8. In accordance with the model Avrett & Loeser (2008), at the level of the photosphere

the plasma parameters are:
11
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P(0)=1.228316 dy% ., T(0)= 65831 (0)=2.87 31(% "

FIG. 1. The angular function at the levelz = 0, given by the formula

F(A/) :\jl ta abg Z0) krJ(4 k) sinOny))for k = AMm)*, Z(0) = 0.622,a =%_622 m = The

figure shows not the geometrical distribution of the magnetic force lines in the horizontal plane (/ ), but

demonstrates only the perturbation which is carried i

FIG. 2. The function Z(2) in the form of distorted step, for two parameter values. For z= 0, at the photosphere level,
Z(0) =0.622. At the height of transition region, around 2 Mm, functionZ(z) is already near to zero, and the magnetic
field approaches potential form. We choose the case a sharp step; 4 (red line) as in the chromosphere the pressure

and density of the gas flis down rapidly with the height.
The angular parametert (together with the radial paramet®rdetermines the number of elements of the fine structure of the
magnetic field in the facular unit. Observations show that this number for a large node gefrenal units to several tens.

We took m = 7, which gives, as can be seen ffd@. 1, 42 elements of a fine structure for a node with a diameter of 5Mm.

12



