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Abstract 

Solar facular nodes regarded as relatively stable and long-lived bright active formations with a diameter from 3 to 8 Mm and having a 

fine (about 1 Mm or less) magnetic filamentary structure with magnetic field strengths from 250 G to 1000 G are modeled analytically. 

The stationary MHD problem is solved and analytical formulae are derived that allow one to calculate the pressure, density, 

temperature, and Alfven Mach number in the configuration under study from the corresponding magnetic field structure. The facular 

node is introduced in a hydrostatic atmosphere defined by the Avrett & Loeser model and is surrounded by a weak (2G) external field 

corresponding to the global magnetic field intensity on the solar surface. The calculated temperature profiles of the facular node at the 

level of the photosphere have a characteristic shape where the temperature on the facula axis is lower than that in the surroundings but 

in the nearest vicinities of the axis and at the periphery of the node, the gas is 200-100 K hotter than the surroundings. Here, on the 

level of photosphere, the model well describes not only the central darkening of the faculae (like Wilson depression, as in sunspots), 

but also ring, semi-ring and segmental facular brightening observed with New Swedish 1-m Telescope at high angular resolution.  In 

the temperature minimum region (z = 525 km), the central dip in T-profile disappears, the temperature at the facular axis considerably 

exceeds the temperature of the ambient plasma, and the facula as a whole is here hotter than the chromosphere. At all heights of the 

chromosphere the temperature of the faculae is higher than surrounding environment at the same level. This difference is particularly 

significant at heights of 1.5 and 2.2 Mm, where the main contribution to gas pressure within the facular node makes a pressure of the 

external magnetic field, which at these heights is already comparable with the internal magnetic field of the facula and even begins to 

surpass it. Apparently, it is these layers of the facular flux tube at heights of more than 1Mm that form the bright phenomena which are 

designated by observers as flocculi or plages. 
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Introduction  

Solar Faculae are bright areas of the photosphere that are visible in white light at the disc as well as at the limb. Although the 

average lifetime of elements in facular field is around 1 hour, these photospheric-chromospheric formations are actually 

magnetically structured and are quite entangled with the sunspots in the sense that they precede and succeed the formation of 

sunspots. In the Solar Dynamics Observatory (SDO/HMI) magnetograms, the facular sites are a set of small magnetic 

elements of different polarity, which are constantly moving, apparently under the influence of perturbations from the granules 

and supergranules. Against this background, however, a separate, less mobile, more stable and long-lived facular formations 

(facular nodes) that live up to a day or more are observed. Apparently, these objects are located at the junctions of several 

convection cells of supergranulation. In these cells radial-horizontal plasma flows are observed that concentrate several 

dozens of magnetic facular elements, which look like separate magnetic flux tubes or bundles, into intersupergranular lanes, 

raking them, due to the frozen-in field in the plasma, to the edges of the cells [1]. We can thereby assume that these plasma 

flows provide the required stabilizing effect for a prolonged existence of the facular nodes. 

 

In this work, we will investigate specifically such relatively stable and long-lived photospheric-chromospheric magnetic 

formations with characteristic transverse dimensions of up to six-eight megameters with magnetic fields from 200-300 to 

1000 G and having a fine internal filamentary structure on a scale of about 1 Mm or less and apparently supported by external 

converging boundaries of two or three nearby supergranulation cells. The gas temperature in the faculae is few hundred 

degrees Kelvin higher than the temperature of the surrounding chromosphere, and the temperature contrast between the 

individual bright elements inside the facular node does not exceed, probably, 100-200 K. At high angular resolutions (New 

Swedish 1-m Telescope), the facular fields in the photosphere are observed to possess a central temperature dip in the form of 

Wilson's depression and regular concentric segmental brightening [2,3]. Explanation of the nature of these specific 

temperature variations is one of the main tasks of the present model. 

 

There are various kinds of wave and oscillatory processes that are observed in the facular fields. Roughly speaking these 

oscillations can be divided into two classes of different physical nature. The most studied are short-period oscillations with 

periods from 3-5 to 10-15 minutes [4-6]. They are usually interpreted as manifestations of acoustic and MHD waves running 

along magnetic flux tubes in the facula where these flux tubes play the role of resonators or waveguides. Many works have 

been devoted to the study of these processes, but they practically do not shed light on actual magnetic structure of a facula. 

Observing these wave phenomena, one can only estimate the phase velocities of the waves in order of magnitude and, 

accordingly, obtain the averaged order estimates of the magnetic field intensity and the plasma density. However, recently 

there have been reports that long-period oscillations with periods from 1 to 4 hours are observed in faculae [7,8]. These 

oscillations can no longer be understood within the framework of propagating MHD wave models or within the framework of 

the "vortex shedding" mechanism due to the stream flowing outside the faculae [9]. Apparently, they reflect the oscillations 

of the facula as a whole, as a single magnetic structure. In such oscillations, significant masses of gas are involved and 

therefore their periods are sufficiently large. These considerations already allow us to take a new approach to the problem of 

the structure of faculae and draw definite conclusions about their physical nature. 
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However, here we are not going to consider the problem of the oscillatory properties of faculae (it would require a separate 

study), but will concentrate only on the construction of their MHD models. One of the first physical models of the faculae 

was the "hot wall" model [10]. It represents the faculae as a vertical magnetic flux tube penetrating deep into the photosphere 

and right into the upper part of convective zone. It is assumed that the plasma density in such a tube is sharply reduced, and 

thus a deep Wilson depression is created which, if viewed from the side, allows us to see through the transparent tube of the 

facula the so called hot layers of the photosphere and the convective zone - hot walls. However, this simply overlooks the fact 

that when such a flux tube is observed on the limb, the observer's line of sight passes at right angles to the axis of the radially 

oriented facular tube, and its low layers, its hot walls, are simply not visible in this position. It turns out that, according to this 

model, faculae cannot be observed on the limb in principle. However, observations show the opposite picture: faculae are 

best seen on the limb! This lack of the model was noted in [11]. Nevertheless, observers still refer to this model: Quintero et 

al. [12]. Even from a theoretical point of view, the model [10] seems unsatisfactory. The expression for the transverse balance 

of pressures is considered to be too simple: 
2 1

1 - = (8 )ex inP P B p-Ö  , where 
1B  is the field at the wall (12). The gas pressure 

in the flux tube and the density of the plasma are considered to be independent on radial distance. It will be shown below that 

the balance of pressures in a vertical magnetic flux tube and the density distribution in it are described by much more 

complicated formulae, and none of the assumptions made in Spruit (1976) are satisfied. Kostik & Khomenko, analyzing the 

causes of the observed brightness of facular tubes, likewise come to the conclusion that the hot-wall mechanism does not 

work [13], and the dissipation of MHD waves is most likely responsible for the heating of faculae. The another popular 

model is ñhillock and cloud modelò for faculae [11], which tries to describe faculae as objects not related to specific magnetic 

structure but possessing enhanced brightness in the vicinities of sunspots mainly due to the uplifting of hot subphotospheric 

plasma which is otherwise entrapped because of the large magnetic fields near the sunspot. This vertical transfer of hot 

subphotospheric plasma according to the authors is assumed to take place along different non-selected by any physical 

mechanism magnetic flux tubes and results in the formation of hot clouds which are actually observed by the observers as 

faculae. This model according to our opinion doesnôt represent the real nature of faculae and therefore can be mentioned for 

purely historical reasons. 

 

Formulation of the problem and the governing equations 

System of equations of ideal MHD in the steady case has the following form: 

                            ( ) [ ]1(4 )P curlr p r-ÖÐ =-Ð + ³ +V V B B g ,       (1) 

                                          ( ) 0,          div r =V
                           (2)

 

                                                           0,div =B                                                            (3)  

                                        
1  P Tr m-= Á  .                                    (4) 

 

We have used the usual notation for the various physical parameters, i.e. B  is mag-netic field intensity vector, V  is flow 

velocity vector of the fluid, , , ,P Tr m are pres-sure, density, temperature and average molar mass of the gas respectively. 

The ener-gy transport equation which has a very complicated form for solar plasma is left un-determined.  
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The formulation of the problem requires the evaluation of stationary distributions of temperature and density which are 

calculable for a given magnetic structure that could answer maximally the observational properties of the modeled objects. 

When such a result is obtained we must explain the correspondence of the observed and theoretically predicted temperature 

distribution with a specific heat transfer mecha-nism in the given configuration. For example, in the case of a sunspot, all 

models must predict considerable low temperature of the umbra with respect to the surrounding photosphere because the 

strong vertical magnetic fields inhibit the convective motion of plasma in sunspots. Likewise, when the equilibrium model of 

the solar filaments or prominences gives the very cool plasma in their bodies, one can explain the low temperature derived 

from the balance of forces as a result of fast cooling of the gas due to high irradiance of dense plasma in the coronal 

conditions.  

 

Most probably faculae and floccules share one and the same magnetic flux tube structure. Also it is quite possible that these 

structures are heated by wave dissipative processes or by joule heating mechanism. Unlike corona which has very low density 

and therefore very high temperature, the chromospheric structures like floccules and photospheric structures like faculae are 

not very hot because of corresponding high densities in comparison with corona. 

 

Exact solutions to the problems of heat transfer and energy dissipation in active solar elements like sunspots, faculae, 

prominences, coronal loops and etc. are now almost impossible not only because of complicated geometry, spatial 

inhomogeneity and tremendous difficulty in 3D radiative transfer calculations in the continuum and in the spectral lines. We 

likewise have further difficulties because of our inability to reliably evaluate the contribution of MHD wave dissipation and 

electric current heating (Joule heating) to the energy balance of the given magnetic structure under study. 

 

Boundary conditions of the problem: Facular nodes are studied as sufficiently solitary magnetic structures and there-fore 

their magnetic field at large heights and at large radial distances from the center of the facular field should attain some 

background value. 

 

The demarcation boundary at the bottom of the facular structure is defined as the depth at which the average magnetic 

pressure in the magnetic flux tube is comparable to the dynamic pressure of convective pulsations in the photosphere: 

22

8 2

turbVB r

p
= . 

 

At the boundary the radial profiles of pressure and temperature should have the typical form where the central region is a bit 

lower than the surroundings, and at large distances from the center, the profiles approach photospheric values. 

 

Attributing a circular structure to the facular nodes, we have that at the periph-ery of this magnetic structure, the radial 

component of magnetic field vector ap-proaches zero and the balance of total pressures on either sides of the object is at-

tained as it was well demonstrated in the work which studied the equilibrium of vertical magnetic flux tubes in the solar 

atmosphere [14]. However, as our calculations show, there is no need to attribute an abrupt sideward boundary to the facular 
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node in our model because the described parameters steadily approach the background values as we move away from the 

center of the object. 

 

Derivation of the governing equation: According to stationary ideal MHD, the plasma flow takes place along the magnetic 

lines of force: 

 4
AM
pr

=
B

V ,                                                                                                          (5) 

where AM  is Alfven Mach number, which is nothing but the ratio of the plasma fluid velocity and the corresponding Alfven 

velocity: A

A

M
V B
=

V B
. From the equations (2), (3) and (5) follows that: 

 
( )4 0AM prÖÐ =B ,                                                                                                   (6) 

i.e. the factor 
AM r is not change along the magnetic field line but can vary arbitrarily as we move to an another field 

line. 

 

In general, the plasma flow inside the facular node possibly is small and therefore the condition (6) is satisfied sufficiently 

well simply due the smallness of Alfven Mach number. Nevertheless, we still consider this parameter for the completeness of 

the model and this permits us to introduce the angular dependence of the field and to describe fine discrete (filamentary) 

structure of the field inside the node. Likewise, the external plasma flow with respect to the facular node remains subalfvenic. 

The super-convective converging flow is expressed in those terms where the hydrostatic pressure ( )exP z of the external 

medium at the photospheric level to which a small dynamic component sup

20.5 ( ) erex z Vr is added up, where superV is 

the velocity of horizontal flow in super-granulation cells. The height profile for this velocity field is unknown and it is only 

possible to give an order of magnitude value: 
sup 0.3 0.5 /erV km sº · . The Alfven velocity in the chromosphere with a 

magnetic field strength of about 10 G or more is more than 10km/s and therefore Alfven Mach number for external layers of 

the facular node is 2 1AM < . The magnitude of the plasma flow velocity inside the node doesnôt exceed 1.0 /km s [12]. 

The same estimation is quite satisfactory for polar faculae [15] and therefore we can safely assume that the flow field of gas 

inside these nodes is subalfvenic: 1AM < . 

 

We rearrange the L.H.S of the equation (1), using the condition (5): 
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( ) [ ]

[ ]

2

2 2
2

1

2

1
( ) .

2 4 4 4 4

A A A A

V curl

M M M M
B curl

r r

r
pr pr pr pr

å õ
Ð ¹ Ð + ³ =æ ö

ç ÷

ë ûè øè øå õî î
= Ð + ³ + Ð ³ ³é ùé ùì üæ ö

é ùç ÷ é ùî îê úê úí ý

V V V V

B B B B

                                (7)  

We use the respective vector identity and the relation (6) to get the following equation: 

 

( ) [ ]
2

21

4 2 4 4

A A AM M M
B curlr r

pr pr pr

ë ûå õå õî îå õ
Ð = Ð + ³ + Ö ÖÐæ öæ öì üæ ö æ öæ öç ÷î îç ÷ç ÷í ý

V V B B B B  .                                   (8) 

We transform the last term in the R.H.S of equation (8) using again the condition (6) to obtain the following equation for 

motion: 

( ) [ ]2 2( ) 4  4  A AM M P curlp p rÖÐ + ÖÐ =- Ð + ³ +B B B B B B g.                                                 (9) 

At last by representing the magnetic part of Lorenz force as 

[ ] 21
( )

2
curl B³ =- Ð + ÐB B B B , we rewrite (9) in the form [14], which constitutes the base our present research: 

( )
2

2 2(1 ) ( (1 )) 4  ( ) 4  
8

A A

B
M M Pp p r

p
- ÖÐ + ÖÐ - = Ð + -B B B B g .                                              (10) 

The idea behind our approach is based upon the experimental observations of the long lived and stable active elements such 

as sunspots, faculae, chromospheric filaments and prominences, we construct the magnetic configuration of these objects up 

to the accuracy of few arbitrary functions and then solve the stationary MHD problem for these magnetic structures and 

finally obtain pressure, density and Alfven Mach number from the three components of equation (10). Later, the obtained 

pressure and density distributions are used in accordance with the ideal gas equation to find the respective temperature 

distribution. In this way for every given configuration of the magnetic field B(r) we can calculate all the required physical 

parameters , ,P Tr , AM  for the stationary existence of this configuration. This allows us to compare the theoretically 

obtained results with the observed data. The arbitrariness in the expression for the magnetic field allows us to freely choose 

the most relevant function that best fits the observed data. The proposed problem in the present work is similar to that which 

was used for modeling the sunspot [15]. 

 

Magnetic structure of steady facular configuration 

We shall assume that the magnetic field of our configuration under study is not twisted i.e. the field has only two independent 

components but both of them are dependent on all three coordinates in the cylindrical system (, ,r zj ): 

{ ( , , ) ,0 , ( , , ) }r r z zB r z B r zjj j= ÖB e e e .                                                                              (11) 

The z-axis is directed along the major axis of the cylinder and the gravitational force is represented by: gr r=- zg e . The 

azimuthal component of the equilibrium equation (10) for the magnetic field given by (11), with 0Bj= , reduces to a 

following simple form: 
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2

( ) 0
8

B
P

j p

µ
+ =

µ
.                                                                                                         (12) 

From the above expression we get the important formula for the pressure balance as: 

2( , , )
( , , ) ( , )

8

B r z
P r z r z

j
j

p
+ =P .                                                                             (13) 

The function ( , )r zP can be clearly interpreted as the total (Gas + Magnetic) pressure which doesnôt depend on the 

cylindrical angular coordinate but preserves the dependence on r and z. Far away from the node one has the following form: 

 

2 ( )
( , ) ( )

8

ex
ex

B z
z P z

p
P ¤ = + ,                                                                                        (14) 

where
exB is the external magnetic field strength with respect to the given magnetic configuration (Obviously

exB doesnôt 

depend on the size of the considered structure and also on the anglej). In case of small external fields we have

( , ) ( )exz P zP ¤ = , where ( )exP z is the gas pressure in the external medium. Though there is small-scale turbulence 

in the photosphere we can fairly assume that the external medium is hydrostatic: 

 

( )
( )ex

ex

P z
g z

z
r

µ
=-

µ
.                                                                                                (15) 

The addition of small dynamic pressure sup

20.5 ( ) erex z Vr to the ( )exP z  and by considering (15), one obtains equation for

( )exP z and ( )ex zr which can be solved by successive iterations and thereby easily correcting the hydrostatic model for the 

external medium. Calculations demonstrate that the above corrections are quite small i.e. they are small by two orders of 

magnitude with respect to the initial values. Therefore we can restrict ourselves to the addition of the small term

sup

20.5 ( ) erex z Vr  to the hydrostatic profile ( )exP z at small photospheric heights. 

 

We now write down equations for two other components in the equation (10) by substituting expression (13) in the R.H.S. 

 

2 2 2(1 ) (1 ) (1 )

4 4

( , )
( , , ) ,

A z z z A A
z r z r

M B B B M M
B B B B

z r z r

r z
g r z

z

p p

r j

å õ- µ µ µ - µ -å õ
+ + + =æ öæ ö

µ µ µ µç ÷ ç ÷

µP
= +

µ

                                  (16) 

 

2 2 2(1 ) (1 (1 ( , )

4 4

A r r r A A
z r z r

M B B B M M r z
B B B B

z r z r rp p

å õ- µ µ µ - µ -µPå õ
+ + + =æ öæ ö

µ µ µ µ µç ÷ ç ÷ .                            (17) 

Now we determine the components of the magnetic field with the help of the magnetic flow function. Simplifying equation 

(3) in terms of cylindrical coordinates, we get: 
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1
0z

r

B
rB

z r r

µ µ
+ =

µ µ
,                                                                                                 (18) 

It follows that the longitudinal and radial fields must be expressed in terms of the function 
0

( , )
r

zA r z b rdr=ñ  and 

some arbitrary dimensionless function of the magnetic flow and the angular coordinate( , )F Aj : 

0

0

1 ( , )
( , , ) ( , ) ( , );     ( , ) ; 

1 ( , )
( , , ) ( , ) ( , );    ( , ) = . 

z z z

r r r

A r z
B r z B F A b r z b r z

r r

A r z
B r z B F A b r z b r z

r z

j j

j j

µ
¹ =

µ

µ
¹ -

µ

                                      (19) 

0B
 
is taken as the unit for the measurement of magnetic field strength. By a simple substitution of these expressions in (18), 

one can see that the magnetic field given by (19) is conditionally solenoidal for any arbitrary differentiable function

( , )F Aj . The dependence of the function F on the angular coordinate can be arbitrarily defined, for example in such a 

simple type: 

2 2( , ) 1 ( , ) 1 sin( )F A f A a k A mj j j= + = + Ö Ö ,                                                                    (20) 

where ( , )f Aj is the positive oscillating component with decreasing amplitude as we move above in height because of 

decreasing magnetic flow A. In (20) a, m are some positive coefficients, 
1(1 )k Mm -= is the reciprocal height scale which 

was introduced to rewrite equation (20) in a dimensionless form. The large values of m allow us to describe fine discrete 

structure inside the facular node due to the combination of radial and angular dependence in equation (20) (FIG. 1). In 

particular, the circular and semicircular structures can be described which are usually observed in the facular fields at high 

angular resolutions [2]. 

 

If there is no angular dependence, than 1F = .  

By substituting expression (19) in the formulas (16) and (17) we get: 

2 2 2

2 2 20 ln(1 ) ln(1 ) ( , )
(1 ) ( , )

4

r r A A

A z r r z r

B b b M M r z
M F A b b b b b

z r z r r
j
p

è øå õµ µ µ - µ - µPå õ
- + + + =é ùæ öæ ö

µ µ µ µ µç ÷ç ÷ê ú
.     (21)  

2 2 2

2 2 20 ln(1 ) ln(1 )
(1 ) ( , )

4

( , )
( , , ) .

z z A A

A z r z z r

B b b M M
M F A b b b b b

z r z r

r z
g r z

z

j
p

r j

è øå õµ µ µ - µ -å õ
- + + + =é ùæ öæ ö

µ µ µ µç ÷ç ÷ê ú

µP
= +

µ

        (22) 

The R.H.S. of the expression (21) doesnôt contain the angular dependence. Consequently, we must take: 

 
2 21 ( , ) ( , ) ( )AM r F A C Aj jè ø- =ê ú                                                                          (23) 
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where ʉ(ɸ) is some positive function of the magnetic flow which is independent of the angular coordinate. In this case, the 

expression 
21 ( , )AM r jè ø-ê údepends on A and jonly, and therefore the small logarithmic terms in the second round 

brackets of the L.H.S. of the equations (21) and (22) identically equal to zero due to Equation (19). One of the cofactors in 

the L.H.S. of (23) is less than unity and the other is oscillatory above one. Considering that the function F is chosen 

sufficiently arbitrarily one can take C = 1 for the simplification of the model which then leads to the following: 

 

2

2

1
1 0

1
A

f
M

fF
= - = >

+
.                                                                                 (24) 

In the limiting case when 0f = , one has 
2 0AM = . As f approaches to1, we get

2 1
2AM ­  and if 1f >>

 
we 

have
2 1AM ­ . If we take 1C const= ,̧ then in all the formulas below we must use the product 0CB  instead of 

0B . In principle, this will not affect the results of the model, only the numerical estimates of the magnetic field intensity in 

the faculae will slightly change. For example, we should use 1100 or 900 G instead of 1000G. 

 

In this way equations (21), (22) take the form: 

 

2

0 ( , )

4

r r

z r

B b b r z
b b

z r rp

µ µ µPå õ
+ =æ ö

µ µ µç ÷
,                                                                              (25)

 

 

2

0 ( , )
( , , ).

4

z z

z r

B b b r z
b b g r z

z r z
r j

p

µ µ µPå õ
+ - =æ ö

µ µ µç ÷
                                                          (26) 

The L.H.S. of the equation (26) doesnôt depend on the angle, consequently this dependence disappears for the distribution of 

plasma density which in our configuration happens to have an axially symmetric form: ( , )r zr r= . 

The expression (25) with the help of (14) is integrated with respect to r from some point of the node to an another point 

infinitely distant from the node: 

2 2

20( , ) 2 ( )
8 8

r
exr

r z ex

B Bb
r z b b dr P z

zp p¤

µè ø
P = + + +é ùµê ú

ñ .                                               (27) 

Substituting ( , )r zP  in (25) we get: 

2 2

2 20

( , ) ( )

1 1
    + 2 2

8 8

ex

r
exz r

r z r z

r z z

B Bb b
b b b b dr

g r z z g z

r r

p p¤

= +

µè µ µ øµå õ
+ - - -é ùæ ö

µ µ µ µç ÷ê ú
ñ .              (28) 

The balance of pressures given by (27) with axial symmetry can be rewritten as: 

 

2( , )
( , ) ( , ) ( ) ( , )

8
ex m

B r z
P r z r z P z P r z

p
=P - = + ,                                             (29) 
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where

2 22
20 ( , )

( , ) 2
8 8 8

r
exr

m r z

B Bb B r z
P r z b b dr

zp p p¤

µè ø
= + - +é ùµê ú

ñ  represents the deviation of gas pressure in the node from 

the corresponding hydrostatic distribution ( )exP z due to the magnetic field. Analogously the expression for the density of gas 

can be written as: 

 

2

( , ) ( ) ( , )
8

ex

ex m

B
r z z r z

z
r r r

p

µ
= - +

µ
,                                                        (30) 

where 

2

2 20 21
( , ) 2

8

r
r z z r

m r z

B b b b b
r z b b dr

g r z z
r

p ¤

è µ µ øµå õ
= - - +é ùæ ö

µ µ µç ÷ê ú
ñ  is the deviation of density from the corresponding 

hydrostatic distribution ( )ex zr owing to the presence of the magnetic field in the node. 

For the asymmetric case the equation (30) is unchanged as the density distribution doesnôt have azimuthal dependence but we 

obtain a dependence on angle in the equation (29) because of the following term
2( , , )B r zj : 

2( , , )
( , , ) ( , ) ( ) ( , , )

8
ex m

B r z
P r z r z P z P r z

j
j j

p
=P - = + ,                                   (31) 

where 

2 22
20 ( , , )

( , , ) 2
8 8 8

r
exr

m r z

B Bb B r z
P r z b b dr

z

j
j

p p p¤

µè ø
= + - +é ùµê ú

ñ is dependent on the angle corresponding to the 

additional magnetic component
2( , , )B r zj . 

In the obtained formulas the important uncertainty is constituted by the term containing 

2

8

exB

p
and the derivative of it with 

respect to height. To consider these, we must introduce an extra hypothesis. We are going to consider the simplest possible 

form: 2exB const G= = , which corresponds to the global magnetic field strength at the level of the photosphere. This field 

varies with height by the scale of hundreds of thousands of km. At the scale of chromospheres i.e. about 2ʄm [16], which is 

considered here, these changes are negligibly small and the expression for the density of the gas (30) can be considered free 

of the small term 

2
1

8

exB

zp

µ

µ
. 

The expressions (29), (30), (31) with the known functions
0 ( , )zB b r z ,

0 ( , )rB b r z allow us to calculate the distributions of 

gas pressure and gas density in the stationary facular node. As one can notice, the exact evaluation of the magnetic force 

gives the equation which is considerably complex in comparison to the usually used simple equation of pressure balance

1 2(8 ) z exP B Pp-+ =  which is true only in the absence of the radial field, gas flow and angular dependence. 

We underline that by the substitution of the potential magnetic field in (30), the function( , )m r zr , one immediately obtains 

zero. At the same time the zero of the function ( , , )mP r zj demands in the correspondence with the physical meaning, the 
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absence of plasma flow 2 0AM =  and the azimuthal variation of the field
2 1F = . This test serves as means of check to the 

correctness of all the carried out calculations. 

The structure of the magnetic field in the facular node 

To describe the magnetic structure of the node, we use as an initial approximation the following solution obtained by 

Schatzman (1965) in its potential limit: 

 

0 0 0

0 1 0

( )exp( ( )),

( )exp( ( )),

z

r

B B J kr k z z

B B J kr k z z

= - -

= - -
                                                                                                 

(31) 

The above distributions are obtained from the following magnetic flow function 

 
0 1 0( )exp( ( ))

r
A B J kr k z z

k

è ø
= - -é ù
ê ú

.                                                                        (32) 

Here 
0 1( ),  ( )J kr J kr  are the Bessel functions of zeroth and first orders, 

0B  is the magnetic field strength at the level of the 

0z z= , 
1(1 )k Mm -=
 
is the reciprocal height scale. After the substitution of the expression for potential magnetic field 

(31) in the obtained formulae for the gas pressure and gas density, one naturally gets unperturbed background values as the 

magnetic force of the potential field is zero. To get the non-potential force configuration, it is needed to introduce the 

respective corrections into the magnetic structure (31). We introduce two needed corrections into our model as follows: (i) 

angular dependence given by the function F (see formula (20) and FIG. 1), and (ii) the substitution of the exponents in (31) 

by the expression: 

 0

1
( )

exp( ( )) 1
Z z

bk z z
=

- +
,                                                                                 (33) 

This expression describes a distorted step (well known in quantum mechanics as the Fermi-Dirac distribution): the positive 

coefficient b defines the order of distortion of the step, larger values of b lead to abrupt edge of the step. Here 0z is some 

level of the coordinate system where the step is reduced to one half, and therefore in the case 
0 0z ¸

 
we should take into 

account that 
0B in the formula (31) will be different from (0)B , i.e. from the magnetic field strength at the starting level 

0z= . For
0z z> this function approaches to exp(-bkz), and therefore for the magnetic field to approach a potential form at 

large heights, we must introduce the same coefficient b in the argument of the Bessel functions (31).Then the magnetic field 

flow with new variables takes the following form: 
0

12
( ) ( )

B
A x J kx Z bkz

kb
= Ö Ö , wherex br= , and the components of the 

field are expressed as: 0 0 1( ) ( ),   ( ) ( ( ))z rB J bkr Z bkz B B J bkr Z bkz¡= Ö = Ö - , where the derivative is taken over the 

argument bkz. For 0 z z< , the magnetic field in the flux tube which goes down stops to be dependent on the depth (FIG. 2). 

For the calculations, we will take 
0 0.125z Mm= , and the level of the photosphere is considered as the level with 0z= . 

For this case: 
0(0) 0.62246B B= Ö. In accordance with the model Avrett & Loeser (2008), at the level of the photosphere 

the plasma parameters are: 
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2 3(0) 1.228 10  ,  T(0) = 6583K, (0) 2.87 10

dyn g
P

cm cm
r -= ³ = ³ . 

 

 

FIG. 1. The angular function at the level 0z= , given by the formula

1( , ) 1 ( (0) (4 ) sin( ))F A a abs Z krJ kr mj j= + Ö Ö for
1(1 ) ,k Mm -= 1(0) 0.622,  , 7

0.622
Z a m= = =. The 

figure shows not the geometrical distribution of the magnetic force lines in the horizontal plane (,r j), but 

demonstrates only the perturbation which is carried into the force lines. The length is expressed in ʄm. 

 

 

FIG. 2. The function Z(z) in the form of distorted step, for two parameter values b. For z = 0, at the photosphere level, 

Z(0) =0.622. At the height of transition region, around 2 Mm, function Z(z) is already near to zero, and the magnetic 

field approaches potential form. We choose the case a sharp step, b = 4 (red line) as in the chromosphere the pressure 

and density of the gas falls down rapidly with the height. 

 

The angular parameter m (together with the radial parameter b) determines the number of elements of the fine structure of the 

magnetic field in the facular unit. Observations show that this number for a large node is from several units to several tens. 

We took m = 7, which gives, as can be seen from FIG. 1, 42 elements of a fine structure for a node with a diameter of 5Mm. 


