A Simple Formula that allows to Calculate the Curvature of the Trajectory in the Minkowsky Space-Time of a Point Located at a Fixed Distance from a Point Mass

Fernando Salmon Iza*

Bachelors in Physics from the Complutense University of Madrid UCM, Spain
*Corresponding author: Fernando Salmon Iza, Bachelors in Physics from the Complutense University of Madrid UCM, Spain,
E-mail: fernandosalmoniza@gmail.com
Received date: 11-April-2023, Manuscript No. tspa-23-94565; Editor assigned: 12-April-2023, Pre-QC No. tspa-23-94565 (PQ); Reviewed: 22-April-2023, QC No. tspa-23-94565 (Q); Revised: 25-April-2023, Manuscript No. tspa-23-94565 (R); Published: 28-April-2023, DOI. 10.37532/2320-6756.2023.11 (4). 340

Abstract

A formula that allows calculating the curvature of the trajectory in the Minkowski space-time (scalar curvature) of a point in the case of a gravitational field caused by a point mass, through the values of mass and spatial distance. Keywords: Cosmology; General relativity; Curvature of space-time

Introduction

Starting from a point mass " M " we study the curvature of the trajectory in the Minkowski space-time (scalar curvature) of a point away from the mass " M " a distance " r ".

Training the Formula

According to rational mechanics, the centrifugal acceleration to which a mobile is subjected that travels around a curve at a speed " v " in a trajectory with a radius of gyration R, is given by:

$$
a=-v^{2} / R
$$

According to the general theory of relativity, the gravitational field is created due to our motion in curved space-time, just like centrifugal force when we are traveling in a car around a curve. If, as we know, space-time moves at a speed of module "c", an observer who is at rest near a mass will be subjected to a gravitational field created by that mass " M ", a field that curves space-time, and will experience, due to the speed " c " of space-time and the curvature of space-time, a centrifugal acceleration "a" given by:

$$
a=c^{2} / R
$$

where R is the radius of curvature of the path of that point in space-time. The force to which it is subjected is given by

$$
\begin{equation*}
F=m c^{2} / R \tag{1}
\end{equation*}
$$

This force to which it is subjected is experienced as a gravitational force and according to Newton's theory of gravitation it is also expressed as

[^0]©2023 Trade Science Inc.
\[

$$
\begin{equation*}
F=-G M \times m / r^{2} \tag{2}
\end{equation*}
$$

\]

where G is the universal gravitational constant.
Equating the two expressions (1), (2) we obtain:

$$
1 / R=-G M /\left(r^{2} c^{2}\right)
$$

$1 / \mathrm{R}$ turns out to be the index of the scalar curvature (curvature of the Minkowski space-time trajectory) from a fixed point at a distance " r " from a point mass M .

A formula that allows us to calculate the scalar curvature of the trajectory in space-time of a point, at a spatial distance " r " from a point mass "M", based on parameters that are easy to determine, such as mass and spatial distance. FIG. 1

FIG. 1. Index of the scalar curvature of the trajectory of the point P in the space-time as the function of the values of the mass m and the spatial distance r.

A Calculation with Imagination

We are going to calculate the curvature of space-time at the radius of the observable universe and with a mass equal to the total mass of the universe. Let's see the result:

Radius of the observable universe $4.40 \times 10^{26} m$ [1].
Mass of the universe $9.27 \times 10^{52} \mathrm{Kg}$
G constant of universal gravitation $6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{Kg}^{2}$

$$
1 / R=-G M /\left(r^{2} c^{2}\right)=6,67 \times 10^{-11} \times 9,27 \times 10^{52} /\left(19,36 \times 10^{52} \times 9 \times 10^{16}\right)=-0,35 \times 10^{-27} m^{-1}
$$

Value close in order of magnitude to that of the vacuum energy density $0.6 \times 10^{-26} \mathrm{Kg} / \mathrm{m}^{3}$ [2].

Conclusions

For an assumption of a point mass, a simple formula has been obtained that allows calculating the index of the scalar curvature (curvature of trajectory in the Minkowski space-time) of the point (t, r, where r is the spatial distance to the mass " M " that is causing that curvature, depending on that distance and the value of that mass.

REFERENCES

1. Espanol WH. Org. pluricelular,
2. Prat J, Hogan C, Chang C, et al. Vacuum energy density measured from cosmological data. J. Cosmol. Astropart. Phys. 2022(06):015.

[^0]: Citation: Salmon F. A Simple Formula that allows to Calculate the Curvature of the Trajectory in the Minkowsky Space-Time of a Point Located at a Fixed Distance from a Point Mass. J. Phys. Astron.2023;11(4):340.

